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1.1 Introduction

Today we live in a predominantly electrical world. Electrical technology is a driving force
in the changes that are occurring in every engineering discipline. For example, surveying
is now done using lasers and electronic range finders.

Circuit analysis is the foundation for electrical technology. An indepth knowledge of
circuit analysis provides an understanding of such things as cause and effect, feedback
and control and, stability and oscillations. Moreover, the critical importance is the fact
that the concepts of electrical circuit can also be applied to economic and social systems.
Thus, the applications and ramifications of circuit analysis are immense.

In this chapter, we shall introduce some of the basic quantities that will be used
throughout the text. An electric circuit or electric network is an interconnection
of electrical elements linked together in a closed path so that an electric current
may continuously flow. Alternatively, an electric circuit is essentially a pipe-line that
facilitates the transfer of charge from one point to another.

1.2 Current, voltage, power and energy

The most elementary quantity in the analysis of electric circuits is the electric charge.
Our interest in electric charge is centered around its motion results in an energy transfer.
Charge is the intrinsic property of matter responsible for electrical phenomena. The
quantity of charge � can be expressed in terms of the charge on one electron. which is
�1�602� 10�19 coulombs. Thus, �1 coulomb is the charge on 6�24� 1018 electrons. The
current flows through a specified area � and is defined by the electric charge passing
through that area per unit time. Thus we define � as the charge expressed in coulombs.

Charge is the quantity of electricity responsible for electric phenomena.



2 � Network Theory

The time rate of change constitutes an electric current. Mathemetically, this relation
is expressed as

�(�) =
��(�)

��
(1.1)

or �(�) =

� �

��

�(�)�� (1.2)

The unit of current is ampere(A); an ampere is 1 coulomb per second.

Current is the time rate of flow of electric charge past a given point .

The basic variables in electric circuits are
current and voltage. If a current flows into
terminal � of the element shown in Fig. 1.1,
then a voltage or potential difference exists
between the two terminals � and 	. Nor-
mally, we say that a voltage exists across
the element.

Figure 1.1 Voltage across an element

The voltage across an element is the work done in moving a positive charge
of 1 coulomb from first terminal through the element to second terminal. The
unit of voltage is volt, V or Joules per coulomb.

We have defined voltage in Joules per coulomb as the energy required to move a
positive charge of 1 coulomb through an element. If we assume that we are dealing with
a differential amount of charge and energy,

then 
 =
��

��
(1.3)

Multiplying both the sides of equation (1.3) by the current in the element gives


� =
��

��

�
��

��

�
� ��

��
= � (1.4)

which is the time rate of change of energy or power measured in Joules per second or
watts ( ).
� could be either positive or negative. Hence it
is imperative to give sign convention for power.
If we use the signs as shown in Fig. 1.2., the
current flows out of the terminal indicated by �,
which shows the positive sign for the voltage. In
this case, the element is said to provide energy
to the charge as it moves through. Power is then
provided by the element.

Figure 1.2 An element with the current
leaving from the terminal
with a positive voltage sign

Conversely, power absorbed by an element is � = 
�, when � is entering through the
positive voltage terminal.
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Energy is the capacity to perform work. Energy and power are related to each
other by the following equation:

������ = � =

� �

��

� ��

EXAMPLE 1.1
Consider the circuit shown in Fig. 1.3 with

 = 8��� V and � = 20��� A for � � 0. Find
the power absorbed and the energy supplied
by the element over the first second of oper-
ation. we assume that 
 and � are zero for
� � 0�

Figure 1.3

SOLUTION

The power supplied is

� = 
� = (8���)(20���)

= 160��2� W

The element is providing energy to the charge flowing through it.
The energy supplied during the first seond is

� =

� 1

0
� �� =

� 1

0
160��2���

= 80(1� ��2) = 69.17 Joules

1.3 Linear, active and passive elements

A linear element is one that satisfies the prin-
ciple of superposition and homogeneity.
In order to understand the concept of super-
position and homogeneity, let us consider the
element shown in Fig. 1.4.

Figure 1.4 An element with excitation
� and response 


The excitation is the current, � and the response is the voltage, 
. When the element
is subjected to a current �1, it provides a response 
1. Furthermore, when the element is
subjected to a current �2, it provides a response 
2. If the principle of superposition is
true, then the excitation �1 + �2 must produce a response 
1 + 
2.

Also, it is necessary that the magnitude scale factor be preserved for a linear element.
If the element is subjected to an excitation �� where � is a constant multiplier, then if
principle of homogencity is true, the response of the element must be �
.

We may classify the elements of a circuir into categories, passive and active, depending
upon whether they absorb energy or supply energy.
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1.3.1 Passive Circuit Elements

An element is said to be passive if the total energy delivered to it from the rest of the
circuit is either zero or positive.

Then for a passive element, with the current flowing into the positive (+) terminal as
shown in Fig. 1.4 this means that

w =

t∫
−∞

vi dt ≥ 0

Examples of passive elements are resistors, capacitors and inductors.

1.3.1.A Resistors

Figure 1.5 Symbol for a resistor R

Resistance is the physical property of an ele-
ment or device that impedes the flow of cur-
rent; it is represented by the symbol R.
Resistance of a wire element is calculated us-
ing the relation:

R =
ρl

A
(1.5)

where A is the cross-sectional area, ρ the resistivity, and l the length of the wire. The
practical unit of resistance is ohm and represented by the symbol Ω.

An element is said to have a resistance of 1 ohm, if it permits 1A of
current to flow through it when 1V is impressed across its terminals.

Ohm’s law, which is related to voltage and current, was published in 1827 as

v = Ri (1.6)

or R =
v

i

where v is the potential across the resistive element, i the current through it, and R the
resistance of the element.

The power absorbed by a resistor is given by

p = vi = v
( v

R

)
=

v2

R
(1.7)

Alternatively,

p = vi = (iR)i = i2R (1.8)

Hence, the power is a nonlinear function of current i through the resistor or of the
voltage v across it.

The equation for energy absorbed by or delivered to a resistor is

w =

∫ t

−∞
pdτ =

∫ t

−∞
i2R dτ (1.9)

Since i2 is always positive, the energy is always positive and the resistor is a passive
element.
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1.3.1.B Inductors

Whenever a time-changing current is passed through a coil or wire, the voltage across
it is proportional to the rate of change of current through the coil. This proportional
relationship may be expressed by the equation


 = �
��

��
(1.10)

Where � is the constant of proportionality known as induc-
tance and is measured in Henrys (H). Remember 
 and � are
both funtions of time.
Let us assume that the coil shown in Fig. 1.6 has � turns and
the core material has a high permeability so that the magnetic
fluk � is connected within the area �. The changing flux
creates an induced voltage in each turn equal to the derivative
of the flux �, so the total voltage 
 across � turns is

Figure 1.6 Model of the
inductor


 = �
��

��
(1.11)

Since the total flux �� is proportional to current in the coil, we have

�� = �� (1.12)

Where � is the constant of proportionality. Substituting equation (1.12) into equa-
tion(1.11), we get


 = �
��

��

The power in an inductor is

� = 
� = �

�
��

��

�
�

The energy stored in the inductor is

� =

� �

��

� ��

= �

� �(�)

�(��)
� �� =

1

2
��2 Joules (1.13)

Note that when � = ��� �(��) = 0. Also note that �(�) � 0 for all �(�)� so the
inductor is a passive element. The inductor does not generate energy, but only stores
energy.
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1.3.1.C Capacitors

A capacitor is a two-terminal element that is a model of a
device consisting of two conducting plates seperated by a di-
electric material. Capacitance is a measure of the ability of
a deivce to store energy in the form of an electric field.
Capacitance is defined as the ratio of the charge
stored to the voltage difference between the two con-
ducting plates or wires,

�

1.7 Circuit symbol for
a capacitor

� =
�




The current through the capacitor is given by

� =
��

��
= �

�


��
(1.14)

The energy stored in a capacitor is

� =

��
��


� ��

Remember that 
 and � are both functions of time and could be written as 
(�) and
�(�).

Since � = �
�


��

we have � =

��
��


 �
�


��
��

= �

�(�)�
�(��)


 �
 =
1

2
�
2

����(�)
�(��)

Since the capacitor was uncharged at � = ��, 
(��) = 0.

Hence � = �(�)

=
1

2
�
2(�) Joules (1.15)

Since � = �
� we may write

�(�) =
1

2�
�2(�) Joules (1.16)

Note that since �(�) � 0 for all values of 
(�), the element is said to be a passive
element.
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1.3.2 Active Circuit Elements (Energy Sources)

An active two-terminal element that supplies energy to a circuit is a source of energy. An
ideal voltage source is a circuit element that maintains a prescribed voltage across the
terminals regardless of the current flowing in those terminals. Similarly, an ideal current
source is a circuit element that maintains a prescribed current through its terminals
regardless of the voltage across those terminals.

These circuit elements do not exist as practical devices, they are only idealized models
of actual voltage and current sources.

Ideal voltage and current sources can be further described as either independent
sources or dependent sources. An independent source establishes a voltage or current
in a circuit without relying on voltages or currents elsewhere in the circuit. The value of
the voltage or current supplied is specified by the value of the independent source alone.
In contrast, a dependent source establishes a voltage or current whose value depends on
the value of the voltage or current elsewhere in the circuit. We cannot specify the value
of a dependent source, unless you know the value of the voltage or current on which it
depends.

The circuit symbols for ideal independent sources are shown in Fig. 1.8.(a) and (b).
Note that a circle is used to represent an independent source. The circuit symbols for
dependent sources are shown in Fig. 1.8.(c), (d), (e) and (f). A diamond symbol is used
to represent a dependent source.

Figure 1.8 (a) An ideal independent voltage source
(b) An ideal independent current source
(c) voltage controlled voltage source
(d) current controlled voltage source
(e) voltage controlled current source
(f) current controlled current source
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1.4 Unilateral and bilateral networks

A Unilateral network is one whose properties or characteristics change with the direction.
An example of unilateral network is the semiconductor diode, which conducts only in one
direction.

A bilateral network is one whose properties or characteristics are same in either direc-
tion. For example, a transmission line is a bilateral network, because it can be made to
perform the function equally well in either direction.

1.5 Network simplification techniques

In this section, we shall give the formula for reducing the networks consisting of resistors
connected in series or parallel.

1.5.1 Resistors in Series

When a number of resistors are connected in series, the equivalent resistance of the com-
bination is given by

R = R1 +R2 + · · ·+Rn (1.17)

Thus the total resistance is the algebraic sum of individual resistances.

Figure 1.9 Resistors in series

1.5.2 Resistors in Parallel

When a number of resistors are connected in parallel as shown in Fig. 1.10, then the
equivalent resistance of the combination is computed as follows:

1

R
=

1

R1
+

1

R2
+ .......+

1

Rn
(1.18)

Thus, the reciprocal of a equivalent resistance of a parallel combination is the sum of
the reciprocal of the individual resistances. Reciprocal of resistance is conductance and
denoted by G. Consequently the equivalent conductance,

G = G1 +G2 + · · ·+Gn

Figure 1.10 Resistors in parallel
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1.5.3 Division of Current in a Parallel Circuit

Consider a two branch parallel circuit as shown in Fig. 1.11. The branch currents I1 and
I2 can be evaluated in terms of total current I as follows:

I1 =
IR2

R1 +R2
=

IG1

G1 +G2
(1.19)

I2 =
IR1

R1 +R2
=

IG2

G1 +G2
(1.20)

Figure 1.11 Current division in a parallel circuit

That is, current in one branch equals the total current multiplied by the resistance of the
other branch and then divided by the sum of the resistances.

EXAMPLE 1.2
The current in the 6Ω resistor of the network shown in Fig. 1.12 is 2A. Determine the

current in all branches and the applied voltage.

Figure 1.12

SOLUTION

Voltage across 6Ω = 6× 2

= 12 volts
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Since 6Ω and 8Ω are connected in parallel, voltage
across 8Ω = 12 volts.
Therefore, the current through

8Ω (between A and B)

�
=

12

8
= 1�5 A

Total current in the circuit = 2 + 1�5 = 3�5 A

Current in the 4Ω branch = 3.5 A

Current through 8Ω (betwen C and D) = 3�5� 20

20 + 8

= 2.5 A

Therefore, current through 20Ω = 3�5� 2�5

= 1A

Total resistance of the circuit = 4 +
6� 8

6 + 8
+

8� 20

8 + 20
= 13�143Ω

Therefore applied voltage,  = 3�5� 13�143 (∵  = ��)

= 46 Volts

EXAMPLE 1.3
Find the value of � in the circuit shown in Fig. 1.13.

Figure 1.13

SOLUTION

Voltage across 5Ω = 2�5� 5 = 12�5 volts

Hence the voltage across the parallel circuit = 25 � 12.5 = 12.5 volts

Current through 20Ω = �1 or �2

=
12�5

20
= 0�625A
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Therefore, current through � = �3 = � � �1 � �2

= 2�5� 0�625� 0�625

= 1�25 Amps

Hence� R =
12�5

1�25
= 10Ω

1.6 Kirchhoff’s laws

In the preceeding section, we have seen how simple resistive networks can be solved
for current, resistance, potential etc using the concept of Ohm’s law. But as the network

becomes complex, application of Ohm’s law for
solving the networks becomes tedious and hence
time consuming. For solving such complex net-
works, we make use of Kirchhoff’s laws. Gustav
Kirchhoff (1824-1887), an eminent German physi-
cist, did a considerable amount of work on the
principles governing the behaviour of eletric cir-
cuits. He gave his findings in a set of two laws: (i)
current law and (ii) voltage law, which together
are known as Kirchhoff’s laws. Before proceeding
to the statement of these two laws let us familar-
ize ourselves with the following definitions encoun-
tered very often in the world of electrical circuits:

Figure 1.14 A simple resistive network
for difining various circuit
terminologies

(i) Node : A node of a network is an equi-potential surface at which two or more circuit
elements are joined. Referring to Fig. 1.14, we find that A,B,C and D qualify as
nodes in respect of the above definition.

(ii) Junction: A junction is that point in a network, where three or more circuit elements
are joined. In Fig. 1.14, we find that B and D are the junctions.

(iii) Branch: A branch is that part of a network which lies between two junction points.
In Fig. 1.14, BAD,BCD and BD qualify as branches.

(iv) Loop: A loop is any closed path of a network. Thus, in Fig. 1.14, ABDA,BCDB and
ABCDA are the loops.

(v) Mesh: A mesh is the most elementary form of a loop and cannot be further divided
into other loops. In Fig. 1.14, ABDA and BCDB are the examples of mesh. Once
ABDA and BCDB are taken as meshes, the loop ABCDA does not qualify as a mesh,
because it contains loops ABDA and BCDB.
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1.6.1 Kirchhoff’s Current Law

The first law is Kirchhoff’s current law(KCL), which states that the algebraic sum of
currents entering any node is zero.

Let us consider the node shown in Fig. 1.15. The sum of the currents entering the
node is

��� + �� � �� + �� = 0

Note that we have ��� since the current �� is leaving the node. If we multiply the
foregoing equation by �1, we obtain the expression

�� � �� + �� � �� = 0

which simply states that the algebraic sum of currents leaving a node is zero. Alternately,
we can write the equation as

�� + �� = �� + ��

which states that the sum of currents entering a node
is equal to the sum of currents leaving the node. If the
sum of the currents entering a node were not equal
to zero, then the charge would be accumulating at a
node. However, a node is a perfect conductor and
cannot accumulate or store charge. Thus, the sum of
currents entering a node is equal to zero. Figure 1.15 Currents at a node

1.6.2 Kirchhoff’s Voltage Law

Kirchhoff’s voltage law(KVL) states that the algebraic sum of voltages around any closed
path in a circuit is zero.

In general, the mathematical representation of Kirchhoff’s voltage law is

	�

=1



(�) = 0

where 

(�) is the voltage across the !
�� branch (with proper reference direction) in a loop

containing � voltages.
In Kirchhoff’s voltage law, the algebraic sign
is used to keep track of the voltage polarity.
In other words, as we traverse the circuit, it is
necessary to sum the increases and decreases
in voltages to zero. Therefore, it is impor-
tant to keep track of whether the voltage is
increasing or decreasing as we go through each
element. We will adopt a policy of consider-
ing the increase in voltage as negative and a
decrease in voltage as positive. Figure 1.16 Circuit with three closed paths
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Consider the circuit shown in Fig. 1.16, where the voltage for each element is identified
with its sign. The ideal wire used for connecting the components has zero resistance,
and thus the voltage across it is equal to zero. The sum of voltages around the loop
incorporating 
6� 
3� 
4 and 
5 is

�
6 � 
3 + 
4 + 
5 = 0

The sum of voltages around a loop is equal to zero. A circuit loop is a conservative
system, meaning that the work required to move a unit charge around any loop is zero.

However, it is important to note that not all electrical systems are conservative. Ex-
ample of a nonconservative system is a radio wave broadcasting system.

EXAMPLE 1.4
Consider the circuit shown in Fig. 1.17. Find each branch current and voltage across

each branch when �1 = 8Ω� 
2 = �10 volts �3 = 2A and �3 = 1Ω. Also find �2.

Figure 1.17

SOLUTION

Applying KCL (Kirchhoff’s Current Law) at node A, we get

�1 = �2 + �3

and using Ohm’s law for �3, we get


3 = �3�3 = 1(2) = 2V

Applying KVL (Kirchhoff’s Voltage Law) for the loop EACDE, we get

�10 + 
1 + 
3 = 0

� 
1 = 10� 
3 = 8V
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Ohm’s law for R1 is

v1 = i1R1

⇒ i1 =
v1
R1

= 1A

Hence, i2 = i1 − i3

= 1− 2 = −1A

From the circuit, v2 = R2i2

⇒ R2 =
v2
i2

=
−10

−1
= 10Ω

EXAMPLE 1.5
Referring to Fig. 1.18, find the follow-
ing:

(a) ix if iy = 2A and iz = 0A

(b) iy if ix = 2A and iz = 2iy

(c) iz if ix = iy = iz

Figure 1.18SOLUTION

Applying KCL at node A, we get

5 + iy + iz = ix + 3

(a) ix = 2 + iy + iz

= 2 + 2 + 0 = 4A

(b) iy = 3 + ix − 5− iz

= −2 + 2− 2iy

⇒ iy = 0A

(c) This situation is not possible, since ix and iz are in opposite directions. The only
possibility is iz = 0, and this cannot be allowed, asKCL will not be satisfied (5 �= 3).

EXAMPLE 1.6
Refer the Fig. 1.19.

(a) Calculate vy if iz = −3A

(b) What voltage would you need to replace 5 V source to obtain vy = −6 V if
iz = 0.5A?
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Figure 1.19

SOLUTION

(a) 
 = 1 (3 
� + �� )

Since 
� = 5V and �� = �3A�
we get 
 = 3(5)� 3 = 12V

(b) 
 = 1 (3 
� + ��) = �6
= 3 
� + 0.5

� 3 v� = �6�5
Hence, 
� = �2.167 volts

EXAMPLE 1.7
For the circuit shown in Fig. 1.20, find �1 and 
1, given �3 = 6Ω.

Figure 1.20

SOLUTION

Applying KCL at node A, we get

��1 � �2 + 5 = 0

From Ohm’s law, 12 = �2�3

� �2 =
12

�3
=

12

6
= 2A

Hence� �1 = 5� �2 = 3A
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Applying KVL clockwise to the loop CBAC, we get

�
1 � 6�1 + 12 = 0

� 
1 = 12� 6�1

= 12� 6(3) = �6volts

EXAMPLE 1.8

Use Ohm’s law and Kirchhoff’s law to evaluate (a) 
�, (b) ���, (c) �� and (d) the power

provided by the dependent source in Fig 1.21.

Figure 1.21

SOLUTION

(a) Applying KVL, (Referring Fig. 1.21 (a)) we get

�2 + 
� + 8 = 0

� 
� = �6V

Figure 1.21(a)
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(b) Applying KCL at node a, we get

�� + 4
� +

�
4

=
8

2

� �� + 4(�6)� 6

4
= 4

� �� � 24� 1�5 = 4

� �� = 29�5A

(c) Applying KCL at node b, we get

��� =
2

2
+ �� +


�
4
� 6

� ��� = 1 + 29�5� 6

4
� 6 = 23A

(d) The power supplied by the dependent current source = 8 (4
� ) = 8 �4��6 = �192W

EXAMPLE 1.9
Find the current �2 and voltage 
 for the circuit shown in Fig. 1.22.

Figure 1.22

SOLUTION

From the network shown in Fig. 1.22, �2 =



6
The two parallel resistors may be reduced to

�� =
3� 6

3 + 6
= 2Ω

Hence, the total series resistance around the loop is

�� = 2 +�� + 4

= 8Ω
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Applying KVL around the loop, we have

�21 + 8�� 3�2 = 0 (1.21)

Using the principle of current division,

�2 =
��2

�1 +�2
=

�� 3

3 + 6

=
3�

9
=

�

3
� � = 3�2 (1.22)

Substituting equation (1.22) in equation (1.21), we get

�21 + 8(3�2)� 3�2 = 0

Hence� �2 = 1A

and 
 = 6�2 = 6V

EXAMPLE 1.10
Find the current �2 and voltage 
 for resistor � in Fig. 1.23 when � = 16Ω.

Figure 1.23

SOLUTION

Applying KCL at node x, we get

4� �1 + 3�2 � �2 = 0

Also� �1 =



4 + 2
=



6

�2 =



�
=




16

Hence� 4� 


6
+ 3 � 


16
� 


16
= 0

� 
 = 96volts

and �2 =



6
=

96

16
= 6A
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EXAMPLE 1.11
A wheatstone bridge ABCD is arranged as follows: AB = 10Ω, BC = 30Ω, CD = 15Ω

and DA = 20Ω. A 2V battery of internal resistance 2Ω is connected between points A
and C with A being positive. A galvanometer of resistance 40Ω is connected between B
and D. Find the magnitude and direction of the galvanometer current.

SOLUTION

Applying KVL clockwise to the loop ABDA, we get

10�� + 40�� � 20� = 0

� 10�� � 20� + 40�� = 0 (1.23)

Applying KVL clockwise to the loop BCDB, we get

30(�� � ��)� 15(� + ��)� 40�� = 0

� 30�� � 15� � 85�� = 0 (1.24)

Finally, applying KVL clockwise to the loop ADCA, we get

20� + 15(� + ��) + 2(�� + �)� 2 = 0

� 2�� + 37� + 15�� = 2 (1.25)

Putting equations (1.23),(1.24) and (1.25) in matrix form, we get	

 10 �20 40

30 �15 �85
2 37 15

�
�
	

 ��
�
��

�
� =

	

 0

0
2

�
�

Using Cramer’s rule, we find that

�� = 0.01 A (Flows from B to D)
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1.7 Multiple current source networks

Let us now learn how to reduce a network having multiple current sources and a number
of resistors in parallel. Consider the circuit shown in Fig. 1.24. We have assumed that
the upper node is 
(�) volts positive with respect to the lower node. Applying "�� to
upper node yields

�1(�)� �2(�)� �3(�) + �4(�)� �5(�)� �6(�) = 0

� �1(�)� �3(�) + �4(�)� �6(�) = �2(�) + �5(�) (1.26)

� ��(�) = �2(�) + �5(�) (1.27)

Figure 1.24 Multiple current source network

Figure 1.25 Equivalent circuit

where ��(�) = �1(�)� �3(�)+ �4(�)� �6(�) is the
algebraic sum of all current sources present
in the multiple source network shown in Fig.
1.24. As a consequence of equation (1.27), the
network of Fig. 1.24 is effectively reduced to
that shown in Fig. 1.25. Using Ohm’s law, the
currents on the right side of equation (1.27)
can be expressed in terms of the voltage and
individual resistance so that KCL equation
reduces to

��(�) =


1

�1
+

1

�2

�

(�)

Thus, we can reduce a multiple current source network into a network having only one
current source.

1.8 Source transformations

Source transformation is a procedure which transforms one source into another while
retaining the terminal characteristics of the original source.

Source transformation is based on the concept of equivalence. An equivalent circuit is
one whose terminal characteristics remain identical to those of the original circuit. The
term equivalence as applied to circuits means an identical effect at the terminals, but not
within the equivalent circuits themselves.
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We are interested in transforming the circuit shown in Fig. 1.26 to a one shown in
Fig. 1.27.

Figure 1.26 Voltage source connected Figure 1.27 Current source connected
to an external resistance R to an external resistance R

We require both the circuits to have the equivalence or same characteristics between the
terminals � and � for all values of external resistance �. We will try for equivanlence of
the two circuits between terminals � and � for two limiting values of � namely � = 0
and � = �. When � = 0, we have a short circuit across the terminals � and �. It is
obligatory for the short circuit to be same for each circuit. The short circuit current of
Fig. 1.26 is

�� =

�
��

(1.28)

The short circuit current of Fig. 1.27 is ��. This enforces,

�� =

�
��

(1.29)

When � = �, from Fig. 1.26 we have 
� = 
� and from Fig. 1.27 we have 
� = ����.
Thus, for equivalence, we require that


� = ���� (1.30)

Also from equation (1.29), we require �� =

�
��

. Therefore, we must have


� =

�

�
��

�
��

� �� = �� (1.31)

Equations(1.29) and (1.31) must be true simulaneously for both the circuits for the two
sources to be equivalent. We have derived the conditions for equivalence of two circuits
shown in Figs. 1.26 and 1.27 only for two extreme values of �, namely � = 0 and � =�.
However, the equality relationship holds good for all � as explained below.
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Applying KVL to Fig. 1.26, we get


� = ��� + 


Dividing by �� gives


�
��

= �+



��

(1.32)

If we use KCL for Fig. 1.27, we get

�� = �+



��

(1.33)

Thus two circuits are equal when

�� =

�
��

and �� = ��

Transformation procedure: If we have embedded within a network, a current source
� in parallel with a resistor � can be replaced with a voltage source of value 
 = �� in
series with the resistor �.

The reverse is also true; that is, a voltage source 
 in series with a resistor � can be

replaced with a current source of value � =



�
in parallel with the resistor �. Parameters

within the circuit are unchanged under these transformation.

EXAMPLE 1.12
A circuit is shown in Fig. 1.28. Find the current � by reducing the circuit to the right of

the terminals �� � to its simplest form using source transformations.

Figure 1.28
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SOLUTION

The first step in the analysis is to transform 30 ohm resistor in series with a 3 V source
into a current source with a parallel resistance and we get:

Reducing the two parallel resistances, we get:

The parallel resistance of 12Ω and the current source of 0.1A can be transformed into
a voltage source in series with a 12 ohm resistor.

Applying KVL, we get

5�+ 12�+ 1�2� 5 = 0

� 17� = 3�8

� i = 0�224A
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EXAMPLE 1.13
Find current �1 using source transformation for the circuit shown Fig. 1.29.

Figure 1.29

SOLUTION

Converting 1 mA current source in parallel with 47kΩ resistor and 20 mA current source
in parallel with 10kΩ resistor into equivalent voltage sources, the circuit of Fig. 1.29
becomes the circuit shown in Fig. 1.29(a).

Figure 1.29(a)

Please note that for each voltage source, “+” corresponds to its corresponding current
source’s arrow head.

Using KVL to the above circuit,

47 + 47� 103�1 � 4�1 + 13�3� 103�1 + 200 = 0

Solving, we find that

�1 = �4.096 mA

EXAMPLE 1.14
Use source transformation to convert the circuit in Fig. 1.30 to a single current source in

parallel with a single resistor.
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Figure 1.30

SOLUTION

The 9V source across the terminals �� and 	� will force the voltage across these two
terminals to be 9V regardless the value of the other 9V source and 8Ω resistor to its
left. Hence, these two components may be removed from the terminals, �� and 	� without
affecting the circuit condition. Accordingly, the above circuit reduces to,

Converting the voltage source in series with 4Ω resistor into an equivalent current
source, we get,

Adding the current sources in parallel and
reducing the two 4 ohm resistors in parallel,
we get the circuit shown in Fig. 1.30 (a):

Figure 1.30 (a)
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1.8.1 Source Shift

The source transformation is possible only in the case of practical sources. ie �� �= �
and �� �= 0, where �� and �� are internal resistances of voltage and current sources
respectively. Transformation is not possible for ideal sources and source shifting methods
are used for such cases.

Voltage source shift (E�shift):
Consider a part of the network shown in Fig. 1.31(a) that contains an ideal voltage source.

Figure 1.31(a) Basic network

Since node 	 is at a potential � with respect to node �, the network can be redrawn
equivalently as in Fig. 1.31(b) or (c) depend on the requirements.

Figure 1.31(b) Networks after E-shift Figure 1.31(c) Network after the E-shift

Current source shift (I�shift)
In a similar manner, current sources also can be shifted. This can be explained with an
example. Consider the network shown in Fig. 1.32(a), which contains an ideal current
source between nodes � and #. The circuit shown in Figs. 1.32(b) and (c) illustrates the
equivalent circuit after the I - shift.
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Figure 1.32(a) basic network

Figure 1.32(b) and (c) Networks after I--shift

EXAMPLE 1.15
Use source shifting and transformation techiniques to find voltage across 2Ω resistor shown

in Fig. 1.33(a). All resistor values are in ohms.

Figure 1.33(a)
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SOLUTION

The circuit is redrawn by shifting 2A current source and 3V voltage source and further
simplified as shown below.

Thus the voltage across 2Ω resistor is

 = 3� 1

2�1 + 4�1 + 4�1
= 3 V
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EXAMPLE 1.16

Use source mobility to calculate vab in the circuits shown in Fig. 1.34 (a) and (b). All

resistor values are in ohms.

Figure 1.34(a) Figure 1.34(b)

SOLUTION

(a) The circuit shown in Fig. 1.34(a) is simplified using source mobility technique, as
shown below and the voltage across the nodes a and b is calculated.

� �

Voltage across a and b is

Vab =
1

3−1 + 10−1 + 15−1
= 2 V
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(b) The circuit shown in Fig. 1.34 (b) is reduced as follows.

Figure 1.34(c) Figure 1.34(d)

Figure 1.34(e)

From Fig. 1.34(e),

 �� =
12�1 � 6

12�1 + 10�1 + 15�1
� 12 = 24 V

Applying this result in Fig. 1.34(b), we get


�� = 
�� � 
��

= 60� 24 = 36 V

EXAMPLE 1.17

Use mobility and reduction techniques to solve the node voltages of the network shown

in Fig. 1.35(a). All resistors are in ohms.
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Figure 1.35(a)

SOLUTION

The circuit shown in Fig. 1.35(a) can be reduced by using desired techniques as shown in
Fig. 1.35(b) to 1.35(e).

Figure 1.35(b)

From Fig. 1.35(e)

� =
34

17
= 2 A

Using this value of � in Fig. 1.35(e),

 � = �9� 2 = �18 V

and  � =  � � 2� 2� 20 = �42 
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Figure 1.35(c)

Figure 1.35(d)

Figure 1.35(e)

From Fig 1.35(a)
 � =  � + 30 = �42 + 30 = �12V
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Then at node 	 in Fig. 1.35(b),

 �
2
� 45 +

 � �  �
8

= 0

Using the value of  � in the above equation and rearranging, we get,

 �

�
1

2
+

1

8

�
= 45� 12

8

�  � = 69�6 V

At node # of Fig. 1.35(b)

 �
5

+ 45 +
 � �  �

10
= 0

 �

�
1

5
+

1

10

�
= �45� 42

10

�  � = �164 V

EXAMPLE 1.18
Use source mobility to reduce the network shown in Fig. 1.36(a) and find the value of  �.

All resistors are in ohms.

Figure 1.36(a)

SOLUTION

The circuit shown in Fig. 1.36(a) can be reduced as follows and  � is calculated.
Thus

 � =
5

25
� 18 = 3�6V
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1.9 Mesh analysis with independent voltage sources

Before starting the concept of mesh analysis, we want to reiterate that a closed path or
a loop is drawn starting at a node and tracing a path such that we return to the original
node without passing an intermediate node more than once. A mesh is a special case of
a loop. A mesh is a loop that does not contain any other loops within it. The network
shown in Fig. 1.37(a) has four meshes and they are identified as $�, where � = 1� 2� 3� 4.
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Figure 1.37(a) A circuit with four meshes. Each mesh is identified by a circuit

The current flowing in a mesh is defined as mesh
current. As a matter of convention, the mesh cur-
rents are assumed to flow in a mesh in the clock-
wise direction.
Let us consider the two mesh circuit of Fig.
1.37(b).
We cannot choose the outer loop, 
 � �1 � �2 �

 as one mesh, since it would contain the loop 
 �
�1 � �3 � 
 within it. Let us choose two mesh
currents �1 and �2 as shown in the figure. Figure 1.37(b) A circuit with two meshes

We may employ KVL around each mesh. We will travel around each mesh in the
clockwise direction and sum the voltage rises and drops encountered in that particular
mesh. We will adpot a convention of taking voltage drops to be positive and voltage rises
to be negative . Thus, for the network shown in Fig. 1.37(b) we have

Mesh 1 : �
 + �1�1 + (�1 � �2)�3 = 0 (1.34)

Mesh 2 : �3(�2 � �1) +�2�2 = 0 (1.35)

Note that when writing voltage across �3 in mesh 1, the current in �3 is taken as
�1 � �2. Note that the mesh current �1 is taken as ‘+ve’ since we traverse in clockwise
direction in mesh 1, On the other hand, the voltage across �3 in mesh 2 is written as
�3(�2 � �1). The current �2 is taken as +ve since we are traversing in clockwise direction
in this case too.

Solving equations (1.34) and (1.35), we can find the mesh currents �1 and �2.
Once the mesh currents are known, the branch currents are evaluated in terms of

mesh currents and then all the branch voltages are found using Ohms’s law. If we have
� meshes with � mesh currents, we can obtain � independent mesh equations. This set
of � equations are independent, and thus guarantees a solution for the � mesh currents.
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EXAMPLE 1.19
For the electrical network shown in Fig. 1.38, determine the loop currents and all branch

currents.

Figure 1.38

SOLUTION

Applying KVL for the meshes shown in Fig. 1.38, we have

Mesh 1 : 0�2�1 + 2(�1 � �3) + 3(�1 � �2)� 10 = 0

� 5�2�1 � 3�2 � 2�3 = 10 (1.36)

Mesh 2 : 3(�2 � �1) + 4(�2 � �3) + 0�2�2 + 15 = 0

� � 3�1 + 7�2�2 � 4�3 = �15 (1.37)

Mesh 3 : 5�3 + 2(�3 � �1) + 4(�3 � �2) = 0

� � 2�1 � 4�2 + 11�3 = 0 (1.38)

Putting the equations (1.36) through (1.38) in matrix form, we have	

 5�2 �3 �2
�3 7�2 �4
�2 �4 11

�
�
	

 �1
�2
�3

�
� =

	

 10
�15
0

�
�

Using Cramer’s rule, we get

�1 = 0�11A

�2 = �2�53A
and �3 = �0�9A
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The various branch currents are now calculated as follows:

Current through 10V battery = �1 = 0�11A

Current through 2Ω resistor = �1 � �3 = 1�01A

Current through 3Ω resistor = �1 � �2 = 2�64A

Current through 4Ω resistor = �2 � �3 = �1�63A
Current through 5Ω resistor = �3 = �0�9A
Current through 15V battery = �2 = �2�53A

The negative sign for �2 and �3 indicates that the actual directions of these currents
are opposite to the assumed directions.

1.10 Mesh analysis with independent current sources

Let us consider an electrical circuit source
having an independent current source as
shown Fig. 1.39(a).
We find that the second mesh current �2 = ���
and thus we need only to determine the first
mesh current �1, Applying KVL to the first
mesh, we obtain

(�1 +�2)�1 ��2�2 = 


Since �2 = ����
we get (�1 +�2)�1 + ���2 = 


� �1 =

 � ���2

�1 +�2

Figure 1.39(a) Circuit containing both inde-
pendent voltage and current sources

As a second example, let us take an electri-
cal circuit in which the current source �� is
common to both the meshes. This situation
is shown in Fig. 1.39(b).
By applying KCL at node x, we recognize
that, �2 � �1 = ��
The two mesh equations (using KVL) are

$�%& 1 : �1�1 + 
� � 
 = 0

$�%& 2 : (�2 +�3)�2 � 
� = 0
Figure 1.39(b) Circuit containing an independent

current source common to both meshes
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Adding the above two equations, we get

�1�1 + (�2 +�3)�2 = 


Substituting �2 = �1 + �� in the above equation, we find that

�1�1 + (�2 +�3)(�1 + ��) = 


� �1 =

 � (�2 +�3)��
�1 +�2 +�3

In this manner, we can handle independent current sources by recording the relation-
ship between the mesh currents and the current source. The equation relating the mesh
current and the current source is recorded as the constraint equation.

EXAMPLE 1.20
Find the voltage  � in the circuit shown in Fig. 1.40.

Figure 1.40
SOLUTION

Constraint equations:

�1 = 4� 10�3 A

�2 = �2� 10�3 A

Applying KVL for the mesh 3, we get

4� 103 [�3 � �2] + 2� 103 [�3 � �1] + 6� 103�3 � 3 = 0

Substituting the values of �1 and �2, we obtain

�3 = 0�25 mA

Hence�  � = 6� 103�3 � 3

= 6� 103(0�25� 10�3)� 3

= �1�5 V
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1.11 Supermesh

A more general technique for mesh analysis method,
when a current source is common to two meshes,
involves the concept of a supermesh. A supermesh is
created from two meshes that have a current source
as a common element; the current source is in the
interior of a supermesh. We thus reduce the number
of meshes by one for each current source present.
Figure 1.41 shows a supermesh created from the two
meshes that have a current source in common. Figure 1.41 Circuit with a supermesh

shown by the dashed line

EXAMPLE 1.21

Find the current �� in the circuit shown in Fig. 1.42(a).

Figure 1.42(a)

SOLUTION

This problem is first solved by the techique explained in Section 1.10. Three mesh currents
are specified as shown in Fig. 1.42(b). The mesh currents constrained by the current
sources are

� = 2� 10�3 A

�2 � �3 = 4� 10�3 A

The KVL equations for meshes 2 and 3 respetively are

2� 103�2 + 2� 103(�2 � �1)� 
� = 0

�6 + 1� 103�3 + 
� + 1� 103(�3 � �1) = 0
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Figure 1.42(b) Figure 1.42(c)

Adding last two equations, we get

�6 + 1� 103�3 + 2� 103�2 + 2� 103(�2 � �1) + 1� 103(�3 � �1) = 0 (1.39)

Substituting �1 = 2� 10�3A and �3 = �2 � 4� 10�3A in the above equation,
we get

�6 + 1� 103
�
�2 � 4� 10�3

�
+ 2� 103�2 + 2� 103

�
�2 � 2� 10�3

�
+1� 103

�
�2 � 4� 10�3 � 2� 10�3

�
= 0

Solving we get

�2 =
10

3
mA

Thus� �� = �1 � �2

= 2� 10

3

=
�4
3

mA

The purpose of supermesh approach is to avoid introducing the unknown voltage 
�.
The supermesh is created by mentally removing the 4 mA current source as shown in
Fig. 1.42(c). Then applying KVL equation around the dotted path, which defines the
supermesh, using the orginal mesh currents as shown in Fig. 1.42(b), we get

�6 + 1� 103�3 + 2� 103�2 + 2� 103(�2 � �1) + 1� 103(�3 � �1) = 0

Note that the supermesh equation is same as equation 1.39 obtained earlier by introduc-
ing 
�, the remaining procedure of finding �� is same as before.
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EXAMPLE 1.22
For the network shown in Fig. 1.43(a), find the mesh currents �1� �2 and �3.

Figure 1.43(a)
Figure 1.43(b)

SOLUTION

The 5A current source is in the common
boundary of two meshes. The supermesh
is shown as dotted lines in Figs.1.43(b) and
1.43(c), the branch having the 5A current
source is removed from the circuit diagram.
Then applying KVL around the dotted path,
which defines the supermesh, using the orig-
inal mesh currents as shown in Fig. 1.43(c),
we find that

�10 + 1(�1 � �3) + 3(�2 � �3) + 2�2 = 0
Figure 1.43(c)

For mesh 3, we have

1(�3 � �1) + 2�3 + 3(�3 � �2) = 0

Finally, the constraint equation is

�1 � �2 = 5

Then the above three eqations may be reduced to

Supemesh: 1�1 + 5�2 � 4�3 = 10

Mesh 3 : �1�1 � 3�2 + 6�3 = 0

current source : �1 � �2 = 5

Solving the above simultaneous equations, we find that,

i1 = 7.5A, i2 = 2.5A, and i3 = 2.5A
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EXAMPLE 1.23
Find the mesh currents �1� �2 and �3 for the network shown in Fig. 1.44.

Figure 1.44

SOLUTION

Here we note that 1A independent current source is in the common boundary of two
meshes. Mesh currents �1� �2 and �3, are marked in the clockwise direction. The supermesh
is shown as dotted lines in Figs. 1.45(a) and 1.45(b). In Fig. 1.45(b), the 1A current
source is removed from the circuit diagram, then applying the KVL around the dotted
path, which defines the supermesh, using original mesh currents as shown in Fig. 1.45(b),
we find that

�2 + 2(�1 � �3) + 1(�2 � �3) + 2�2 = 0

Figure 1.45(a) Figure 1.45(b) .

For mesh 3, the KVL equation is

2(�3 � �1) + 1�3 + 1(�3 � �2) = 0
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Finally, the constraint equation is

�1 � �2 = 1

Then the above three equations may be reduced to

Supermesh : 2�1 + 3�2 � 3�3 = 2

Mesh 3 : 2�1 + �2 � 4�3 = 0

Current source : �1 � �2 = 1

Solving the above simultaneous equations, we find that
i1 = 1.55A, i2 = 0.55A, i3 = 0.91A

1.12 Mesh analysis for the circuits involving dependent sources

The persence of one or more dependent sources merely requires each of these source
quantites and the variable on which it depends to be expressed in terms of assigned mesh
currents. That is, to begin with, we treat the dependent source as though it were an
independent source while writing the KVL equations. Then we write the controlling
equation for the dependent source. The following examples illustrate the point.

EXAMPLE 1.24

(a) Use the mesh current method to solve for �� in the circuit shown in Fig. 1.46.

(b) Find the power delivered by the independent current source.

(c) Find the power delivered by the dependent voltage source.

Figure 1.46

SOLUTION

(a) We mark two mesh currents �1 and �2 as shown in Fig. 1.47. We find that � = 2�5mA.
Applying KVL to mesh 2, we find that

2400(�2 � 0�0025) + 1500�2 � 150(�2 � 0�0025) = 0 (∵ �� = �2 � 2�5 mA)

� 3750�2 = 6� 0�375

= 5�625

� �2 = 1�5 mA

�� = �2 � 2�5 = �1�0mA
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(b) Applying KVL to mesh 1, we get
�
� + 2�5(0�4)� 2�4�� = 0
� 
� = 2�5(0�4)� 2�4(�1�0) = 3�4V

'ind.source = 3�4� 2�5� 10�3

= 8.5 mW(delivered)

(c) 'dep.source = 150��(�2)

= 150(�1�0� 10�3)(1�5� 10�3)

= �0.225 mW(absorbed) Figure 1.47

EXAMPLE 1.25

Find the total power delivered in the circuit using mesh-current method.

Figure 1.48

SOLUTION

Let us mark three mesh currents �1, �2 and �3 as shown in Fig. 1.49.

KVL equations :
Mesh 1: 17�5�1 + 2�5(�1 � �3)

+5(�1 � �2) = 0
� 25i1 � 5�2 � 2�5�3 = 0
Mesh 2: �125 + 5(�2 � �1)

+7�5(�2 � �3) + 50 = 0
� �5�1+12�5�2�7�5�3 = 75
Constraint equations :

�3 = 0�2 �

 � = 5(�2 � �1)

Thus� �3 = 0�2� 5(�2 � �1) = �2 � �1�
Figure 1.49
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Making use of �3 in the mesh equations, we get

Mesh 1 : 25�1 � 5�2 � 2�5(�2 � �1) = 0

� 27�5�1 � 7�5�2 = 0

Mesh 2 : � 5�1 + 12�5�2 � 7�5(�2 � �1) = 75

� 2�5�1 + 5�2 = 75

Solving the above two equations, we get

�1 = 3�6 A� �2 = 13�2 A

and �3 = �2 � �1 = 9�6 A

Applying KVL through the path having 5Ω� 2�5Ω� 
�� � 125V source, we get,

5(�2 � �1) + 2�5(�3 � �1) + 
�� � 125 = 0

� 
�� = 125� 5(�2 � �1)� 2�5(�3 � �1)

= 125� 48� 2�5(9�6� 3�6) = 62 V

'��� = 62(9�6) = 595�2W (absorbed)

'50V = 50(�2 � �3) = 50(13�2� 9�6) = 180W (absorbed)

'125V = 125�2 = 1650W (delivered)

EXAMPLE 1.26
Use the mesh-current method to find the power delivered by the dependent voltage source

in the circuit shown in Fig. 1.50.

Figure 1.50
SOLUTION

Applying KVL to the meshes 1, 2 and 3 shown in Fig 1.51, we have

Mesh 1 : 5�1 + 15(�1 � �3) + 10(�1 � �2)� 660 = 0

� 30�1 � 10�2 � 15�3 = 660
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Mesh 2 : � 20�� + 10(�2 � �1) + 50(�2 � �3) = 0

� 10(�2 � �1) + 50(�2 � �3) = 20��

� � 10�1 + 60�2 � 50�3 = 20��

Mesh 3 : 15(�3 � �1) + 25�3 + 50(�3 � �2) = 0

� � 15�1 � 50�2 + 90�3 = 0

Figure 1.51

Also �� = �2 � �3
Solving, i1 = 42A, i2 = 27A, i3 = 22A, i� = 5A.
Power delivered by the dependent voltage source = '20�a = (20��)�2

= 2700W (delivered)

1.13 Node voltage anlysis

In the nodal analysis, Kirchhoff’s current law is used to write the equilibrium equations.
A node is defined as a junction of two or more branches. If we define one node of the
network as a reference node (a point of zero potential or ground), the remaining nodes of
the network will have a fixed potential relative to this reference. Equations relating to all
nodes except for the reference node can be written by applying KCL.
Refering to the circuit shown
in Fig.1.52, we can arbitrarily
choose any node as the reference
node. However, it is convenient
to choose the node with most con-
nected branches. Hence, node 3 is
chosen as the reference node here.
It is seen from the network of Fig.
1.52 that there are three nodes.

Figure 1.52 Circuit with three nodes where the
lower node 3 is the reference node
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Hence, number of equations based on KCL will be total number of nodes minus one.
That is, in the present context, we will have only two KCL equations referred to as node
equations. For applying KCL at node 1 and node 2, we assume that all the currents leave
these nodes as shown in Figs. 1.53 and 1.54.

Figure 1.53 Simplified circuit for Figure 1.54 Simplified circuit for
applying KCL at node 1 applying KCL at node 2

Applying KCL at node 1 and 2, we find that

(i) At node 1: �1 + �2 + �4 = 0

� 
1 � 
�
�1

+

1 � 
2
�2

+

1 � 0

�4
= 0

� 
1


1

�1
+

1

�2
+

1

�4

�
� 
2

1

�2
=


�
�1

(1.40)

(ii) At node 2: �2 + �3 + �5 = 0

� 
2 � 
1
�2

+

2 � 
�
�3

+

2
�5

= 0

� � 
1


1

�2

�
+ 
2


1

�2
+

1

�3
+

1

�5

�
=


�
�3

(1.41)

Putting equations (1.40) and (1.41) in matrix form, we get	
���


1

�1
+

1

�2
+

1

�4
� 1

�2

� 1

�2

1

�2
+

1

�3
+

1

�5

�
����
	
���


1


2

�
���� =

	
���



�
�1


�
�3

�
����

The above matrix equation can be solved for node voltages 
1 and 
2 using Cramer’s
rule of determinants. Once 
1 and 
2 are obtainted, then by using Ohm’s law, we can find
all the branch currents and hence the solution of the network is obtained.
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EXAMPLE 1.27
Refer the circuit shown in Fig. 1.55. Find the three node voltages 
�, 
� and 
�, when all

the conductances are equal to 1S.

Figure 1.55
SOLUTION

At node a: ((1 +(2 +(6)
� �(2
� �(6
� = 9� 3

At node b: �(2
� + ((4 +(2 +(3)
� �(4
� = 3

At node c: �(6
� �(4
� + ((4 +(5 +(6)
� = 7

Substituting the values of various conductances, we find that

3
� � 
� � 
� = 6

�
� + 3
� � 
� = 3

�
� � 
� + 3
� = 7

Putting the above equations in matrix form, we see that	

 3 �1 �1
�1 3 �1
�1 �1 3

�
�
	

 
�

�

�

�
� =

	

 6

3
7

�
�

Solving the matrix equation using cramer’s rule, we get


� = 5�5V� 
� = 4�75V� 
� = 5�75V

The determinant Δ used for computing 
�, 
� and 
� in general form is given by

( =

���������

�
�

( �(�� �(��

�(��

�
�

( �(��

�(�� �(��

�
�

(

���������
where

�
�

( is the sum of the conductances at node �, and (�
 is the sum of conductances

conecting nodes � and !.
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The node voltage matrix equation for a circuit with ) unknown node voltages is
Gv = is�

where� v =

	
���


�

�
...

�

�
����

is the vector consisting of ) unknown node voltages.

The matrix ia =

	
���


��1
��2
...
���

�
����

is the vector consisting of ) current sources and ��� is the sum of all the source currents
entering the node ). If the )th current source is not present, then ��� = 0.

EXAMPLE 1.28
Use the node voltage method to find how much power the 2A source extracts from the

circuit shown in Fig. 1.56.

Figure 1.56

SOLUTION

Applying KCL at node a, we get

2 +

�
4

+

� � 55

5
= 0

� 
� = 20V

'2Asource = 20(2) = 40W (absorbing)

Figure 1.57
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EXAMPLE 1.29
Refer the circuit shown in Fig. 1.58(a).

(a) Use the node voltage method to find the branch currents �1 to �6.
(b) Test your solution for the branch currents by showing the total power dissipated equals

the power developed.

Figure 1.58(a)
SOLUTION

(a) At node 
1:


1 � 110

2
+

1 � 
2

8
+

1 � 
3

16
= 0

� 11
1 � 2
2 � 
3 = 880

At node 
2:


2 � 
1
8

+

2
3

+

2 � 
3

24
= 0

� � 3
1 + 12
2 � 
3 = 0

At node 
3:


3 + 110

2
+

3 � 
2

24
+

3 � 
1

16
= 0

� � 3
1 � 2
2 + 29
3 = �2640
Figure 1.58(b)

Solving the above nodal equations,we get


1 = 74�64V� 
2 = 11�79V� 
3 = �82�5V

Hence� �1 =
110� 
1

2
= 17�68A

�2 =

2
3

= 3�93A
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�3 =

3 + 110

2
= 13�75A

�4 =

1 � 
2

8
= 7�86A

�5 =

2 � 
3

24
= 3�93A

�6 =

1 � 
3

16
= 9�82A

(b) Total power delivered = 110�1 + 110�3 = 3457�3W
Total power dissipated = �21 � 2 + �22 � 3 + �23 � 2 + �24 � 8 + �25 � 24 + �26 � 16

= 3457.3 W

EXAMPLE 1.30
(a)Use the node voltage method to show that the output volatage 
� in the circuit of

Fig 1.59(a) is equal to the average value of the source voltages.

(b) Find 
� if 
1 = 150V, 
2 = 200V and 
3 = �50V.

Figure 1.59(a)

SOLUTION

Applying KCL at node a, we get


� � 
1
�

+

� � 
2
�

+

� � 
3
�

+� � �+ 
� � 
�
�

= 0

� �
� = 
1 + 
2 + � � � + 
�

Hence� 
� =
1

�
[
1 + 
2 + � � � + 
�]

=
1

�

��
�=1


�

(b) 
� =
1

3
(150 + 200� 50) = 100V Figure 1.59(b)
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EXAMPLE 1.31
Use nodal analysis to find 
� in the circuit of Fig. 1.60.

Figure 1.60

Figure 1.61
SOLUTION

Referring Fig 1.61, at node 
1:


1 + 6

6
+

1
3

+

1 + 3

2
= 0

� 
1
6

+

1
3

+

1
2

= �2�5
� 
1 = �2�5 V


� =



1

2 + 1

�
� 1

=
�2�5
3

� 1

= �0�83volts

EXAMPLE 1.32
Refer to the network shown in Fig. 1.62. Find the power delivered by 1A current source.

Figure 1.62
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SOLUTION

Referring to Fig. 1.63, applying KVL
to the path 
� � 4Ω� 3Ω, we get


� = 
1 � 
3


2 = 12V

At node 
1 :

1
4

+

1 � 
2

2
� 1 = 0

� 
1
4

+

1 � 12

2
� 1 = 0


1 = 9�33 V

At node 
2:

3
3

+

3 � 
2

2
+ 1 = 0

� 
3
3

+

3 � 12

2
+ 1 = 0

� 
3 = 6V

Figure 1.63

Hence� 
� = 9�33� 6 = 3�33 volts

'1A source = 
� � 1

= 3�33� 1 = 3�33W (delivering)

1.14 Supernode

Inorder to understand the concept of a supernode, let us consider an electrical circuit as
shown in Fig. 1.64.

Applying KVL clockwise to the loop containing �1, voltage source and �2, we get

� = 
� + 
�

� 
� � 
� = 
�(Constraint equation) (1.42)

To account for the fact that the source voltage
is known, we consider both 
� and 
� as part
of one larger node represented by the dotted
ellipse as shown in Fig. 1.64. We need a larger
node because 
� and 
� are dependent (see
equation 1.42). This larger node is called the
supernode.
Applying KCL at nodes � and 	, we get


�
�1

� �� = 0

and

�
�2

+ �� = �� Figure 1.64 Circuit with a supernode
incorporating 
� and 
�.
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Adding the above two equations, we find that


�
�1

+

�
�2

= ��

� 
�(1 + 
�(2 = �� (1.43)

Solving equations (1.42) and (1.43), we can find the values of 
� and 
�.

When we apply KCL at the supernode, mentally imagine that the voltage source 
�
is removed from the the circuit of Fig. 1.63, but the voltage at nodes � and 	 are held at

� and 
� respectively. In other words, by applying KCL at supernode, we obtain


�(1 + 
�(2 = ��

The equation is the same equation (1.43). As in supermesh, the KCL for supernode
eliminates the problem of dealing with a current through a voltage source.

Procedure for using supernode:

1. Use it when a branch between non-reference nodes is connected by an independent
or a dependent voltage source.

2. Enclose the voltage source and the two connecting nodes inside a dotted ellipse to
form the supernode.

3. Write the constraint equation that defines the voltage relationship between the two
non-reference node as a result of the presence of the voltage source.

4. Write the KCL equation at the supernode.

5. If the voltage source is dependent, then the constraint equation for the dependent
source is also needed.

EXAMPLE 1.33

Refer the electrical circuit shown in Fig. 1.65 and find 
�.

Figure 1.65
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SOLUTION

The constraint equation is,


� � 
� = 8

� 
� = 
� + 8

The KCL equation at the supernode
is then,


� + 8

500
+

(
� + 8)� 12

125
+

� � 12

250

+

�
500

= 0

Therefore� v� = 4V Figure 1.66

EXAMPLE 1.34
Use the nodal analysis to find 
� in the network of Fig. 1.67.

Figure 1.67
SOLUTION

Figure 1.68
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The constraint equation is,


2 � 
1 = 12

� 
1 = 
2 � 12

KCL at supernode :


2 � 12

1� 103
+

(
2 � 12)� 
3
1� 103

+

2

1� 103
+

2 � 
3
1� 103

= 0

� 4� 10�3
2 � 2� 10�3
3 = 24� 10�3

� 4
2 � 2
3 = 24

At node 
3:


3 � 
2
1� 103

+

3 � (
2 � 12)

1� 103
= 2� 10�3

� � 2� 10�3
2 + 2� 10�3
3 = �10� 10�3

�2
2 + 2
3 = �10

Solving we get 
2 = 7V


3 = 2V

Hence� 
� = 
3 = 2V

EXAMPLE 1.35
Refer the network shown in Fig. 1.69. Find the current ��.

Figure 1.69

SOLUTION

Constriant equation:

3 = 
1 � 12
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Figure 1.70

KCL at supernode :


1 � 12

3� 103
+


1
2� 103

+

1 � 
2
3� 103

= 0

� 7

6
� 10�3
1 � 1

3
� 10�3
2 = 4� 10�3

� 7

6

1 � 1

3

2 = 4

KCL at node 2:


2 � 
1
3� 103

+

2

3� 103
+ 4� 10�3 = 0

� � 1

3
� 10�3
1 +

2

3
� 10�3
2 = �4� 10�3

� � 1

3

1 +

2

3

2 = �4

Putting the above two nodal equations in matrix form, we get	
��


7

6

�1
3

�1
3

2

3

�
���
	
��


1


2

�
��� =

	
��


4

�4

�
���

Solving the above two matrix equations using Cramer’s rule, we get


1 = 2V

� �� =

1

2� 103
=

2

2� 103
= 1mA
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EXAMPLE 1.36
Refer the network shown in Fig. 1.71. Find the power delivered by the dependent voltage

source in the network.

Figure 1.71

SOLUTION

Refer Fig. 1.72, KCL at node 1:


1 � 80

5
+

1
50

+

1 + 75��

25
= 0

where �� =

1
50

� 
1 � 80

5
+

1
50

+

1 + 75

� 
1
50

�
25

= 0

Solving we get 
1 = 50V
Figure 1.72

� �� =

1
50

=
50

50
= 1A

Also� �1 =

1 � (�75��)
(10 + 15)

=

1 + 75��
(10 + 15)

=
50 + 75� 1

(10 + 15)
= 5A

'75�� = (75��)�1

= 75� 1� 5

= 375W (delivered)

EXAMPLE 1.37
Use the node-voltage method to find the power developed by the 20 V source in the circuit

shown in Fig. 1.73.
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Figure 1.73

SOLUTION

Figure 1.74

Constraint equations :


� = 20� 
2


1 � 31�� = 
3

�� =

2
40

Node equations :
(i) Supernode:


1
20

+

1 � 20

2
+

3 � 
2

4
+

3
80

+ 3�125
� = 0

� 
1
20

+

1 � 20

2
+

(
1 � 35��)� 
2
4

+
(
1 � 35��)

80
+ 3�125(20� 
2) = 0

� 
1
20

+

1 � 20

2
+

�

1 � 35


2
40

�
� 
2

4
+

�

1 � 35


2
40

�
80

+ 3�125(20� 
2) = 0
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(ii) At node 
2:


2
40

+

2 � 
3

4
+

2 � 20

1
= 0

� 
2
40

+

2 � (
1 � 35��)

4
+

2 � 20

1
= 0

� 
2
40

+

2 �

�

1 � 35


2
40

�
4

+

2 � 20

1
= 0

Solving the above two nodal equations, we get


1 = �20�25V� 
2 = 10V

Then 
3 = 
1 � 35��

= 
1 � 35

2
40

= �29V

Also� �� =
20� 
1

2
+

20� 
2
1

=
20 + 20�25

2
+

(20� 10)

1

= 30.125 A

'20V = 20�� = 20(30�125)

= 602.5 W (delivered)

EXAMPLE 1.38

Refer the circuit shown in Fig. 1.75(a). Determine the current �1.

Figure 1.75(a)



Circuit Concepts and Network Simplification Techniques � 61

SOLUTION

Constraint equation:

Applying KVL clockwise to the loop containing 3V source, dependent voltage source,
2A current source and 4Ω resitor, we get

�
1 � 3� 0�5�1 + 
2 = 0

� 
1 � 
2 = �3� 0�5�1

Substituting �1 =

2 � 4

2
, the above equation becomes

4
1 � 3
2 = �8

Figure 1.75(b)

KCL equation at supernode :


1
4

+

2 � 4

2
= �2 � 
1 + 2
2 = 0

Solving the constraint equation and the KCL equation at supernode simultaneously,
we find that,


2 = 727�3 mV


1 = �2
2
= �1454�6 mV

Then� �1 =

2 � 4

2
= �1�636A
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EXAMPLE 1.39
Refer the network shown in Fig. 1.76(a). Find the node voltages 
� and 
�.

Figure 1.76(a)

SOLUTION

From the network, shown in Fig. 1.76 (b), by inspection,
� = 8 V, �1 =

� � 
�

2
Constraint equation: 
� = 6�1 + 
�

KCL at supernode :

� � 
�

2
+

�
2

+

� � 
�

2
= 3
�

� 
�


1

2
+

1

2

�
� 1

2

� +

1

2
[
� � 
�] = 3
� (1.44)

Figure 1.76(b)
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Substituting 
� = 8 V in the constrained equation, we get


� = 6
(
� � 
�)

2
+ 
�

= 3(
� � 
�) + 
�

= 3(8� 
�) + 
� (1.45)

Substituting equation (1.45) into equation (1.44), we get

[3(8� 
�) + 
�]� 1

2
(8) +

1

2
[
� � 
�] = 3
�

� 24� 3
� + 
� � 4 +
1

2

� � 1

2

� = 3
�

� � 6�5
� + 1�5
� = �20 (1.46)

KCL at node c :

� � 
�

2
+

� � 
�

2
= 4

Substituting 
� = 8V, we have

� � 8

2
+

� � 
�

2
= 4

� 
� � 8 + 
� � 
� = 8

� 2
� � 
� = 16

� 
� � 0�5
� = 8 (1.47)

Solving equations (1.46) and (1.47), we get


� = �1.14V


� = �18.3V

EXAMPLE 1.40
For the circuit shown in Fig. 1.77(a), determine all the node voltages.

Figure 1.77(a)
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SOLUTION

Refer Fig 1.77(b), by inspection, 
2 = 5V
Nodes 1 and 3 form a supernode.
Constraint equation:


1 � 
3 = 6

KCL at super node :


1 � 
2
10

+

3
1

+ 2 = 0

Substituting 
2 = 5V, we get


1 � 5

10
+

3
1

= �2
� 
1 � 5 + 10
3 = �20
� 
1 + 10
3 = �15

Figure 1.77(b)

Solving the constraint and the KCL equations at supernode simultaneously, we get

v1 = 4.091V

v3 = �1.909V

KCL at node 4 :


4
2

+

4 � 
2

4
� 2 = 0

Substituting 
2 = 5V, we get


4
2

+

4 � 5

4
� 2 = 0

Solving we get, 
4 = 4�333V�

1.15 Brief review of impedance and admittance

Let us consider a general circuit with two accessible terminals, as shown in Fig. 1.78. If
the time domain voltage and current at the terminals are given by


 = 
� sin(*�+ ��)

� = �� sin(*�+ ��)

then the phasor quantities at the terminals are Figure 1.78 General phasor
circuit
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V =  �
�
��

I = ��
�
��

We define the ratio of V to I as the impedence of the circuit, which is denoted as Z.
That is,

Z =
V

I

It is very important to note that impedance Z is a complex quantity, being the ratio
of two complex quantities, but it is not a phasor. That is, it has no corresponding
sinusoidal time-domain function, as current and voltage phasors do. Impedence is a
complex constant that scales one phasor to produce another.

The impedence Z is written in rectangular form as

Z = �+ !+

where � = Real[Z] is the resistance and + = Im[Z] is the reactance. Both � and +, like
Z, are measured in ohms.
The magnitude of Z is written as |Z| =

	
�2 ++2

and the angle of Z is denoted as �� = tan�1


+

�

�
.

The relationships are shown graphically in Fig. 1.79.
The table below gives the various forms of Z for
different combinations of ��� and �. Figure 1.79 Graphical representation

of impedance

Type of the circuit Impedance Z

1. Purely resistive Z = �

2. Purely inductive Z = !*� = !+�

3. Purely capactive Z =
�!
*�

= �!+�

4. �� Z = �+ !*� = �+ !+�

5. �� Z = �� !

*�
= �� !+�

6. ��� Z = �+ !*�� !

*�
= �+ !(+� �+�)

‘

The reciprocal of impendance is denoted by

Y =
1

Z
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is called admittance and is analogous to conductance in resistive circuits. Evidently, since
Z is a complex number, so is Y. The standard representation of admittance is

Y = (+ !,

The quantities ( = Re[Y] and , = Im[Y] are respectively called conductance and sus-
pectence. The units of Y, ( and , are all siemens.

1.16 Kirchhoff’s Laws: Applied to alternating circuits

If a complex excitation, say 
��

(��+�), is applied to a circuit, then complex voltages, such

as 
1�

(��+�1)� 
2�


(��+�2) and so on, appear across the elements in the circuit. Kirchhoff’s
voltage law applied around a typical loop results in an equation such as


1 �
j(ωt+θ1)

+ 
2 �
j(ωt+θ2)

+ � � � + 
	�
j(ωt+θN )

= 0

Dividing by �
��, we get


1�

�1 + 
2�


�2 + � � � + 
	�

�N = 0

� V1 +V2 + � � � +V	 = 0

where V� =  �
�
-� � � = 1� 2� � � ��

are the phasor voltage around the loop.
Thus KVL holds good for phasors also. A similar approach will establish KCL also.

At any node having � connected branches,

I1 + I2 + � � � + I	 = 0

where I� = ��
�
-� � � = 1� 2 � � ��

Thus, KCL holds good for phasors also.

EXAMPLE 1.41
Determine V1 and V2, the node voltage phasors using nodal technique for the circuit

shown in Fig. 1.80.

Figure 1.80
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SOLUTION

First step in the analysis is to convert the circuit of Fig. 1.80 into its phasor version
(frequency domain representation).

5 cos 2� � 5 / 0� � * = 2 rad.s

1

4
H � !*� = !

1

2
Ω

1

2
F � �!

*�
= �!1Ω� 1F � �!

*�
= �! 1

2
Ω

Figure 1.80(a)

Figure 1.80(b)

Fig. 1.80(a) and (b) are the two versions of the phasor circuit of Fig. 1.80.

Z1 = !1Ω


�
�! 1

2
Ω

�

=

!1

�
�! 1

2

�

!1� !
1

2

= �!1Ω
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Z2 = !
1

2
Ω

1Ω

=

�
!
1

2

�
(1)�

!
1

2
+ 1

� =
1 + !2

5
Ω

KCL at node V1:

2 (V1 � 5 /0� ) +
V1

�!1 +
V1 �V2

�!1 = 0

� (2 + !2)V1 � !1V2 = 10

KCL at node V2:

V2 �V1

�!1 +
V2

1 + !2

5

= 5∠0�

� !V2 � !V1 +V2 � 2!V2 = 5

� � !1V1+(1� !1)V2 = 5

Putting the above equations in a matrix form, we get	

 2 + !2 �!1

�!1 1� !1

�
�
	

 V1

V2

�
� =

	

 10

5

�
�

Solving V1 and V2 by Cramer’s rule, we get

V1 = 2� !1 V

V2 = 2 + !4 V

In polar form,

V1 =
	
5 /�26�6� V

V2 = 2
	
5 /63�4� V

In time domain,

v1 =
�
5 cos(2t� 26.6�) V

v2 = 2
�
5 cos(2t+ 63.4�) V
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EXAMPLE 1.42

Find the source voltage V� shown in Fig. 1.81 using nodal technique. Take I = 3/45� A�

Figure 1.81

SOLUTION

Refer to Fig. 1.81(a).

KCL at node 1:

V1 �V�

10
+

V1

�!5 +
V1 �V2

5 + !2
= 0

� (11 + !12)V1 � (5 + !2)V� = 10V2 (1.48)

Figure 1.81(a)

KCL at node 2:
V2 �V1

5 + !2
+ I+

V2

8 + !3
= 0

� (8 + !3)V1 = (13 + !5)V2 + (34 + !31)I (1.49)

Also� V2 = 4I = 4(3 /45� ) = 12 /45�

= 6
	
2 + !6

	
2 (1.50)
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Substituting equations (1.48) and (1.50) in equation (1.49), we get

(8 + !3)V1 = 74�24 + !290�62

� V1 =
300 /75�7�

8�54 /20�6�

= 35�1 /55�1�

= 20�1 + !28�8 V

Substituting V1 and V2 in equation (1.48) yields

(5 + !2)V� = �209�4 + !473�1

Therefore� V� =
517�4 /113�9�

5�38 /21�8�
= 96.1/92.1� V

EXAMPLE 1.43

Find the voltage 
(�) in the network shown in Fig. 1.82 using nodal technique.

Figure 1.82

SOLUTION

Converting the circuit diagram shown in Fig. 1.82 into a phasor circuit diagram, we get

Figure 1.83
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At node V1:

V1 � (�1 + !)

!2
+

V1

2
+

V1 �V2

�!2 = 0

� V1 � !V2 = 1 + ! (1.51)

At nodeV2 :
V2 �V1

�!2 +
V2

�!2 � I� = 0

Also I� = 2I� =
2(�1 + !)

�!2 = �1� !

Hence�
V2 �V1

�!2 +
V2

�!2 = �1� !

� � !V1 + !2V2 = �2� !2 (1.52)

Solving equations (1.51) and (1.52) using Cramer’s rule we get

V2 =
	
2 /135� V

Therefore� v(t) = v2(t) =
�
2 cos(4t+ 135�) V

EXAMPLE 1.44
Refer to the circuit of Fig. 1.84. Using nodal technique, find the current �.

Figure 1.84

SOLUTION

Reactance of
1

5
/F capacitor =

1

!*�
=

1

!5000� 1

5
� 10�6

= �!1kΩ

The parallel combinations of 2kΩ and �!1kΩ is

Z� =
2� 103(�!103)
2� 103 � !103

=
2

5
(1� !2)kΩ



72 � Network Theory

Figure 1.85

The phasor circuit of Fig. 1.84 is as shown in Fig. 1.85.
Constraint equation :

V2 = V1 + 3000I

KCL at supernode :

V1 � 4 /0�

500
+

V1

2

5
(1� !2)� 103

+
V2

(2� !1)� 103
= 0

Substituting V2 = V1 + 3000I in the above equation, we get

V1 � 4 /0�

500
+

V1

2

5
(1� !2)� 103

+
V1 + 3000I

(2� !1)� 103
= 0

Also,

I =
4/0� �  1

500
(1.53)

Hence,

V1 � 4∠0�

500
+

V1

2

5
(1� !2)� 103

+

V1 + 3000

�
4�V1

500

�
(2� !1)� 103

= 0

Solving for V1 and substituting the same in equation (1.53), we get I = 24 /53�1� mA
Hence, in time-domain, we have

i = 24cos(5000t+ 53.1�)mA
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EXAMPLE 1.45
Use nodal analysis to find V� in the circuit shown in Fig. 1.86.

Figure 1.86

SOLUTION

The voltage source and its two connecting nodes form the supernode as shown in
Fig. 1.87.

Figure 1.87

Constraint equation:
Applying KVL clockwise to the loop formed by 12 /0� source, !2Ω and �!4Ω we get

�12 /0� +V� �V1 = 0

� V1 =V� � 12 /0�

KCL at supernode :

V1

!2
+

V1 �V2

1
+

V� �V2

1
+

V�

�!4 = 0
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Substituting V1 = V� � 12 in the above equation

we get,
�!
2
(V� � 12) + (V� � 12�V2) +V� �V2 +

!

4
V� = 0

� V�

��!
2

+ 1 + 1 +
!

4

�
+V2(�1� 1) = 12� !6

� V�

�
2� 1

4
!

�
� 2V2 = 12� !6

KCL at V2 :
V2 �V1

1
+

V2

2
+

V2 �V�

1
= 0

Substituting V1 = V� � 12 /0� in the above equation

we get, V2 � (V� � 12 /0� ) +
1

2
V2 +V2 �V� = 0

� � 2V� +
5

2
V2 = �12 /0�

Solving the two nodal equations,we get

V� = 11.056� j8.09 = 13.7/�36.2� V

EXAMPLE 1.46
Find �1 in the circuit of Fig. 1.88 using nodal analysis.

Figure 1.88
SOLUTION

The phasor equivalent circuit is as shown in Fig. 1.88(a).
KCL at node V1:

V1 � 20 /0�

10
+

V1

�!2�5 +
V1 �V2

!4
= 0

� (1 + !1�5)V1 + !2�5V2 = 20

KCL at node V2:
V2 �V1

!4
+

V2

!2
= 2I1

But I1 =
V1

�!2�5
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Figure 1.88(a)

Hence�
V2 �V1

!4
+

V2

!2
=

2V1

�!2�5
� � !0�55V1 � !0�75V2 = 0

Multiplying throughout by !20, we get

11V1 + 15V2 = 0

Putting the two nodal equations in matrix form, we get	

 1 + !1�5 !2�5

11 15

�
�
	

 V1

V2

�
� =

	

 20

0

�
�

Solving the matrix equation, we get

V1 = 18�97 /18�43� V

V2 = 13�91 /�161�56� V

The current I1 =
V1

�!2�5 = 7�59 /108�4� A

Transforming this to the time-domain, we get

i1 = 7.59 cos(4t+ 108.4�)A

EXAMPLE 1.47
Use the node-voltage method to find the steady-state expression for 
�(�) in the circuit

shown in Fig. 1.89 if


�1 = 10 cos(5000�+ 53�13�)V


�2 = 8 sin 5000� V
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Figure 1.89

SOLUTION

The first step is to convert the circuit of Fig. 1.89 into a phasor circuit.

10 cos(5000�+ 53�13�)V� * = 5000rad.sec � 10 /53�13� = 6 + !8V

8 sin 5000� = 8 cos(5000�� 90�)V � 8 /�90� = �!8V
� = 0�4 mH � !*� = !2Ω

� = 50/0 � 1

!*�
= �!4Ω

The phasor circuit is shown in
Fig. 1.89(a).
KCL at node 1:

V� � (6 + !8)

!2
+

V�

6

+
V� � (�!8)

�!4 = 0

Solving we get V� = 12 /0� V
Figure 1.89(a)

Hence, the steady-state expression is


�(�) = 12 cos 5000t

EXAMPLE 1.48
Solve the example (1.47) using mesh-current method.

SOLUTION

Refer Fig. 1.90.

KVL to mesh 1 : [6 + !2]I1 � 6I2 = 10 /53�13�

KVL to mesh 2 : � 6I1 + (6� !4)I2 = 8/�90�
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Figure 1.90

Putting the above equations in matrix form, we get	

 6 + !2 �6

�6 6� !4

�
�
	

 I1

I2

�
� =

�
10 /53�13�

8 /�90�

�

Solving for I1 and I2, we get

I1 = 4 + !3

I2 = 2 + !3

Now� V� = (I1 � I2)6 = 12

= 12 /0� V

Hence in time domain, v� = 12 cos 5000t Volts

EXAMPLE 1.49
Determine the current I� in the circuit of Fig. 1.91 using mesh analysis.

Figure 1.91

SOLUTION

Refer Fig 1.92
KVL for mesh 1 :

(8 + !10� !2)I1 � (�!2)I2 � !10I3 = 0

� (8 + !8)I1 + !2I2 = !10I3 (1.54)
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KVL for mesh 2 :

(4� !2� !2)I2 � (�!2)I1 � (�!2)I3 + 20 /90� = 0

� !2I1 + (4� !4)I2 + !2I3 = �!20 (1.55)

For mesh 3� I3 = 5 (1.56)

Sustituting the value of I3 in the equations (1.54) and (1.55), we get

(8 + !8)I1 + !2I2 = !50

!2I1 + (4� !4)I2 = �!20� !10

= �!30

Putting the above equations in matrix
form,we get	

 8 + !8 !2

!2 4� !4

�
�
	

 I1

I2

�
� =

	

 !50

�!30

�
�

Figure 1.92

Using Cramer’s rule,we get

I2 = 6�12 /�35�22� A

The required current: I� = �I2
= 6.12/144.78� A

EXAMPLE 1.50
Find V�� using mesh technique.

Figure 1.93

SOLUTION

Applying KVL clockwise for mesh 1 :

600I1 � !300(I1 � I2)� 9 = 0

� (600� !300)I1 + !300I2 = 9
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Figure 1.94

Applying KVL clockwise for mesh 2 :

�2V� + 300I2 � !300(I2 � I1) = 0

Also� V� = �!300(I1 � I2)

Hence� � 2(�!300(I1 � I2)) + 300I2 � !300 (I2 � I1) = 0

� !3I1 + (1� !3)I2 = 0

Putting the above two mesh equations in matrix form, we get	

 600� !300 !300

!3 1� !3

�
�
	

 I1

I2

�
� =

�
9

0

�

Using Cramer’s rule, we find that

I2 = 0�0124 /�16� A

Hence� V�� = 300I2 = 3.72/�16� V

EXAMPLE 1.51
Find the steady current �1 when the source voltage is 
� = 10

	
2 cos(*� + 45�) V and

the current source is �� = 3 cos*� A for the circuit of Fig. 1.95. The circuit provides the
impedence in ohms for each element at the specified *.

Figure 1.95
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SOLUTION

Figure 1.96

The first step is to convert the circuit of Fig. 1.95 into a phasor circuit. The phasor
circuit is shown in Fig. 1.96.


� = 10
	
2 cos(*�+ 45�) � V� = 10

	
2 /45� = 10(1 + !)

�� = 3 cos*� � I� = 3/0�

Figure 1.96(a)

Constraint equation:
I2 � I1 = I� = 3/0�

Applying KVL clockwise around the supermesh we get

I1Z1 + I2(Z2 + Z3)�V� = 0

Substituting I2 = I1 + I� (from the constraint equation)

we get, I1Z1 + (I1 + I�)(Z2 + Z3) = V�

� (Z1 + Z2 + Z3)I1 = V� � (Z2 + Z3)I�

� I1 =
V� � (Z2 + Z3)I�
Z1 + Z2 + Z3

=
(10 + !10)� (2� !2)3

2

= 2 + !8 = 8�25 /76� A

Hence in time domain,

i1 = 8.25 cos(ωt+ 76�) A
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EXAMPLE 1.52

Find the steady-state sinusoidal current �1 for the circuit of Fig. 1.97, when 
� = 10
	
2 cos

(100�+ 45�) V�

Figure 1.97

SOLUTION

The first step is to convert the circuit of Fig. 1.97 int to a phasor circuit. The phasor
circuit is shown in Fig. 1.98.


� = 10
	
2 cos(100�+ 45�)

� V� = 10
	
2 /45� � * = 100 rad. sec

� = 30 mH � +� = !*�

= !100� 30� 10�3 = !3Ω

� = 5 mF � +� =
1

!*�

=
1

!100� 5� 10�3
= �!2Ω

KVL for mesh 1 :

(3 + !3)I1 � !3I2 = 10 + !10

KVL for mesh 2 :

(3� !3)I1 + (!3� !2)I2 = 0

Putting the above two mesh equations in matrix form, we get

	

 3 + !3 �!3

3� !3 !1

�
�
	

 I1

I2

�
� =

	

 10 + !10

0

�
�
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Using Cramer’s rule,we get

I1 = 1�05 /71�6� A

Thus the steady state time re-
sponse is,

i1 = 1.05 cos(100t+ 71.6�)A

Figure 1.98

EXAMPLE 1.53
Determine V� using mesh analysis.

Figure 1.99

SOLUTION

Figure 1.100
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From Fig. 1.100, we find by inspection that,

I1 = 2Ia = 2(I2 − I3)

I2 = 4 mA

Applying KVL clockwise to mesh 3, we get

1× 103(I3 − I2) + 1× 103(I3 − I1) + 2× 103I3 = 0

Substituting I1 = 2(I2 − I3) and I2 = 4 mA in the above equation and solving for I3,

we get, I3 = 2 mA

Then, Vo = 2× 103I3

= 4V

EXAMPLE 1.54
Find Vo in the network shown in Fig. 1.101 using mesh analysis.

Figure 1.101

SOLUTION

Figure 1.102
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By inspection, we find that I2 = 2/0� A.
Applying KVL clockwise to mesh 1, we get

�12 + I1(2� !1) + (I1 � I2)(4 + !2) = 0

Substituting I2 = 2/0� in the above equation yields,

�12 + I1(2� !1 + 4 + !2) � 2(4 + !2) = 0

� I1 =
20 + !4

6 + !1
= 3�35 /1�85� A

Hence V� = 4(I1 � I2)

= 5�42 /4�57� V

Wye � Delta transformation

For reducing a complex network to a single impedance between any two terminals, the
reduction formulas for impedances in series and parallel are used. However, for certain
configurations of network, we cannot reduce the interconnected impedances to a single
equivalent impedance between any two terminals by using series and parallel impedance
reduction techniques. That is the reason for this topic.

Consider the networks shown in Fig. 1.103 and 1.104.

Figure 1.103 Delta resistance network Figure 1.104 Wye resistance network

It may be noted that resistors in Fig. 1.103 form a Δ (delta), and resistors in Fig.
1.104. form a Υ (Wye). If both these configurations are connected at only the three
terminals �, 	 and #, it would be very advantageous if an equivalence is established be-
tween them. It is possible to relate the resistances of one network to those of the other
such that their terminal characteristics are the same. The relationship between the two
configurations is called Υ�Δ transformation.

We are interested in the relationship between the resistances �1, �2 and �3 and the
resitances ��, �� and ��. For deriving the relationship, we assume that for the two
networks to be equivalent at each corresponding pair of terminals, it is necessary that
the resistance at the corresponding terminals be equal. That is, for example, resistance
at terminals 	 and # with � open-circuited must be same for both networks. Hence, by
equating the resistances for each corresponding set of terminals, we get the following set
of equations :
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(i) ���(Υ) = ���(Δ)

� �� +�� =
�2(�1 +�3)

�2 +�1 +�3
(1.57)

(ii) ���(Υ) = ���(Δ)

� �� +�� =
�3(�1 +�2)

�3 +�1 +�2
(1.58)

(iii) ���(Υ) = ���(Δ)

� �� +�� =
�1(�2 +�3)

�1 +�2 +�3
(1.59)

Solving equations (1.57), (1.58) and (1.59) gives

�� =
�1�2

�1 +�2 +�3
(1.60)

�� =
�2�3

�1 +�2 +�3
(1.61)

�� =
�1�3

�1 +�2 +�3
(1.62)

Hence, each resistor in the Υ network is the product of the resistors in the two adjacent
Δ branches, divided by the sum of the three Δ resistors.

To obtain the conversion formulas for transforming a wye network to an equivalent
delta network, we note from equations (1.60) to (1.62) that

���� +���� +���� =
�1�2�3(�1 +�2 +�3)

(�1 +�2 +�3)2
=

�1�2�3

�1 +�2 +�3
(1.63)

Dividing equation (1.63) by each of the equations (1.60) to (1.62) leads to the following
relationships :

�1 =
���� +���� +����

��

(1.64)

�2 =
���� +���� +����

��

(1.65)

�3 =
���� +���� +����

��

(1.66)

Hence each resistor in the Δ network is the sum of all possible products of Υ resistors
taken two at a time, divided by the opposite Υ resistor.

Then Υ and Δ are said to be balanced when

�1=�2 = �3 = �Δ and �� = �� = �� = �Υ
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Under these conditions the conversions formula become

�Υ =
1

3
�Δ

and �Δ = 3�Υ

EXAMPLE 1.55
Find the value of resistance between the terminals � � 	 of the network shown in

Fig. 1.105.

Figure 1.105

SOLUTION

Let us convert the upper Δ to Υ

��1 =
(6k)(18k)

6k + 12k + 18k
= 3 kΩ

��1 =
(6k)(12k)

6k + 12k + 18k
= 2 kΩ

��1 =
(12k)(18k)

6k + 12k + 18k
= 6 kΩ

Figure 1.106

The network shown in Fig. 1.106 is now reduced to that shown in Fig. 1.106(a)
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Hence� ��� = 4 + 3 + 7�875 + 2

= 16.875kΩ

Figure 1.106(a)

EXAMPLE 1.56
Find the resistance ��� using Υ�Δ transformation.

Figure 1.107

SOLUTION

Figure 1.108
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Let us convert the upper Δ between the points �1, 	1 and #1 into an equivalent Υ.

��1 =
6� 18

6 + 18 + 6
= 3�6Ω

��1 =
6� 6

6 + 18 + 6
= 1�2Ω

��1 =
6� 18

6 + 18 + 6
= 3�6Ω

Figure 1.108 now becomes

��� = 5 + 3�6 + 7�2

27�6
= 8�6 +

7�2� 27�6

7�2 + 27�6
= 14�31Ω

EXAMPLE 1.57
Obtain the equvivalent resistance ��� for the circuit of Fig. 1.109 and hence find �.

Figure 1.109
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SOLUTION

Let us convert Υ between the terminals �, 	 and # into an equivalent Δ.

��� =
���� +���� +����

��

=
10� 20 + 20� 5 + 5� 10

5
= 70Ω

��� =
���� +���� +����

��

=
10� 20 + 20� 5 + 5� 10

10
= 35Ω

��� =
���� +���� +����

��

=
10� 20 + 20� 5 + 5� 10

20
= 17�5Ω

The circuit diagram of Fig. 1.109 now becomes the circuit diagram shown in Fig.
1.109(a). Combining three pairs of resistors in parallel, we obtain the circuit diagram of
Fig. 1.109(b).

Figure 1.109(a)

70

30 = 70� 30

70 + 30
= 21Ω

12�5

17�5 = 12�5� 17�5

12�5 + 17�5
= 7�292Ω

15

35 = 15� 35

15 + 35
= 10�5Ω

��� = (7�292 + 10�5)

21 = 9�632Ω

Thus� � =

�
���

= 12�458 A Figure 1.109(b)
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Nodal versus mesh analysis

The analysis of a complex circuit can usually be accomplished by either the node voltage
or mesh current method. One may ask : Given a network to be analyzed, how do we
know which method is better or more efficient? The choice is dictated by two factors.

When a circuit contains only voltage sources, it is probably easier to use the mesh
current method. Conversely, when the circuit contains only current sources, it will be
easier to use the node voltage method. Also, a circuit with fewer nodes than meshes
is better analyzed using nodal analysis, while a circuit with fewer meshes than nodes is
better analyzed using mesh analysis. In other words, the best technique is one which gives
smaller number of equations.

Another point to consider while choosing between the two methods is, what informa-
tion is required. If node voltages are required, it may be advantageous to apply nodal
analysis. On the other hand, if you need to know several currents, it may be wise to
proceed directly with mesh current analysis.

It is often advantageous if we know both the techniques. The first advantage lies in
the fact that the second method can verify the results of the first method. Also, both the
methods have limitations. For example, while analysing a transistor circuit, only mesh
method is suited and while analysing an Op-amp circuit, nodal method is only applicable.
Mesh technique is applicable for planar1 networks. However, nodal method suits to both
planar and nonplanar 2 networks.

Reinforcement Problems

R.P 1.1

Find the power dissipated in the 80Ω resistor using mesh analysis.

Figure R.P.1.1

1A planar network can be drawn on a plane without branches crossing each other.
2A nonplanar network is one in which crossover is identified and cannot be eliminated by redrawing

the branches.
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SOLUTION

KVL clockwise to mesh 1 :

14�1 � 4�2 � 8�3 = 230

KVL clockwise to mesh 2 :

�4�1 + 22�2 � 16�3 = 260

KVL clockwise to mesh 3 :

�8�1 � 16�2 + 104�3 = 0

Putting the above mesh equations in matrix form, we get	
���


14 �4 �8
�4 22 �16
�8 �16 104

�
����
	
���

�1

�2

�3

�
���� =

	
���


230

260

0

�
����

The current �3 is found from the above matrix equation by using Cramer’s rule.

�3 = 5A

Thus� '80 = �23�80 = 52 � 80 = 2000W(dissipated)

R.P 1.2

Refer the circuit shown in Fig. R.P. 1.2. The current �� = 4A. Find the power dissipated

in the 70 Ω resistor.

Figure R.P.1.2

SOLUTION

By inspection, we find that the mesh current �3 = �� = 4A
KVL clockwise to mesh 1 : 75�1 � 70�2 � 5�3 = 180
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Substituting �3 = 4A� we get 75�1 � 70�2 = 200
KVL clockwise to mesh 2 : �70�1 + 88�2 � 10�3 = 0
Substituting the value �3 = 4A� we get �70�1 + 88�2 = 40
Puting the two mesh equations in matrix from, we get

75 �70
�70 88

� 
�1
�2

�
=


200
40

�

Using Cramer’s rule, we get

�1 = 12A� �2 = 10A

'70 = (�1 � �2)
270 = 4� 70

= 280 W (dissipated)

R.P 1.3

Solve for current I in the circuit of Fig. R.P. 1.3 using nodal analysis.

Figure R.P.1.3

SOLUTION

KCL at node V1 :

V1 � 20 /�90�
2

+
V1

�!2 +
V1 �V2

!1
+ 5 /0� = 0

� (0�5� !0�5)V1 + !V2 = �5 � !10

KCL at node V2 :

V2 �V1

!1
+

V2

4
� 2I� 5 /0� = 0

Also, I =
V1

�!2
Hence,

V2 �V1

!1
+

V2

4
+

2

!2
V1 � 5 /0� = 0
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� (0�25� !)V2 = 5

� V2 =
5

0�25� !

Making use of V2 in the nodal equation at node V1� we get

�5� !10 � !5

0�25� !
= 0�5(1� !)V1

� (1� !)V1 = �10� !20�
�

!40

1� !4

�
� V1 = 15�81 /�46�5� V

Hence� I =
V1

�!2 =
15�81 /�46�5�

2 /�90�
= 7�906 /43�5� A

R.P 1.4

Find V� shown in the Fig. R.P. 1.4 using Nodal technique.

Figure R.P.1.4 Figure R.P.1.4(a) .
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SOLUTION

We find from Fig RP 1.4(a) that,
V1 = V�

Constraint equation:
Applying KVL clockwise along the path consisting of voltage source, capacitor, and 2Ω
resistor, we find that

12 /0� +V2 �V1 = 0

� V1 =V2 + 12 /0�

or V2 =V1 � 12

KCL at Supernode :

V1 �V3

!2
+

V1

2
+

V2

�!4 +
V2 �V3

4
= 0

� (2� !2)V1 + (1 + !)V2 + (�1 + !2)V3 = 0

KCL at node 3 :

V3 �V1

!2
+

V3 �V2

4
� 0�2V� = 0 (1.67)

Substituting V� = V1, we get

(0�8� !2)V1 +V2 + (�1 + !2)V3 = 0 (1.68)

Subtracting equation (1.68) from (1.67), we get

1�2V1 + !V2 = 0 (1.69)

Substituting V2 = V1 � 12 (from the constraint equation), we get

1�2V1 + !(V1 � 12) = 0

� V1 =
!12

1�2 + !
= V�

Hence V� = 7.68/50.2� V

R.P 1.5

Solve for �� using mesh analysis.

Figure R.P. 1.5
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SOLUTION

The first step in the analysis is to draw the phasor circuit equivalent of Fig. R.P.1.5.

Figure R.P. 1.5(a)

* = 2

10 cos 2� � 10 /0� V

6 sin 2� = 6 cos(2�� 90) � 6 /�90� = �!6V
� = 21 � +� = !*� = !4Ω

� = 0�250 � +� =
1

!*�
=

1

!2

�
1

4

� = �!2Ω

Applying KVL clockwise to mesh 1 :

�10 + (4� !2)I1 + !2I2 = 0

� (2� !1)I1 + !I2 = 5

Applying KVL clockwise to mesh 2 :

!2I1 + (!4� !2)I2 + (�!6) = 0

I1 + I2 = 3

Putting the above mesh equations in a matrix form, we get�
2� ! !

1 1

��
I1

I2

�
=

�
5

3

�

Using Cramer’s rule, we get

I1 = 2 + !0�5�

I2 = 1� !0�5�

I� = I1 � I2 = 1 + ! = 1�414 /45�

Hence ��(�) = 1�414 cos (2t+ 45�) A
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R.P 1.6

Refer the circuit shown in Fig. R.P. 1.6. Find I using mesh analysis.

Figure R.P.1.6

SOLUTION

Figure R.P.1.6(a)

Constraint equation:

I3 � I2 = 2I

� I3 � I2 = 2(I1 � I2)

� I3 = 2I1 � I2

Also, for mesh 4, I4 = 5 A

Applying KVL clockwise for mesh 1 :

�(�!20) + (2� !2)I1 + !2I2 = 0

� (1� !)I1 + !I2 = �!10 (1.70)
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Applying KVL clockwise for the supermesh :

(! � !2)I2 + !2I1 + 4I3 � !I4 = 0

Substituting I3 = 2I1 � I2 and I4 = 5A

we get (8 + !2)I1 � (4 + !)I2 = !5 (1.71)

Putting equations (1.70) and (1.71) in matrix form, we get
1� ! !

8 + !2 �(4 + !)

� 
I1
I2

�
=

 �!10
!5

�

Solving for I1 and I2, we get

I1 = �(5�44 + !4�26) A

I2 = �(11�18 + !9�7) A

I = I1 � I2

= 5�735 + !5�44

= 7.9/43.49� A

R.P 1.7

Calculate V� in the circuit of Fig. R.P. 1.7 using the method of source transformation.

Figure R.P. 1.7

SOLUTION

Transform the voltage source to a
current source and obtain the circuit
shown in Fig. R.P.1.7(a).

I� =
20 /�90�

5
= 4 /�90� A

Figure R.P.1.7(a)

Z� = 5Ω

3 + !4 =
5� (3 + !4)

5 + (3 + !4)
= 2�5 + !1�25Ω
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Converting the current source in Fig. R.P. 1.7(b) to a voltage source gives the circuit
as shown in Fig. R.P. 1.7(c).

Figure R.P.1.7(b) Figure R.P.1.7(c)

V� = I�Z� = �4!(2�5 + !1�25)

= 5� !10V

V� = 10I

=


V�

Z� + Z2 + 10

�
10

=
5� !10

[2�5 + !1�25 + 4� !13 + 10]
� 10

= 5.519/�28� V

R.P 1.8

Find 
� and �� in the circuit shown in Fig. R.P. 1.8.

Figure R.P. 1.8

SOLUTION

Constraint equation: �2 � �1 = 3 +

�
4

� �2 = �1 + 3 +

3
4

The above equation becomes very clear if one writes KCL equation at node B of Fig.
R.P. 1.8(a).
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Figure R.P. 1.8(a)
Figure R.P. 1.8(b)

Applying KVL clockwise to the supermesh in Fig. R.P. 1.8(b), we get

�50 + 10�1 + 5�2 + 4�� = 0

But �� = �1. Hence, �50 + 10�1 + 5�2 + 4�1 = 0

� 14�1 + 5�2 = 50 (1.72)

Making use of 
� = (�1 � �2)� 2 in the constraint equation, we get

�2 = �1 + 3 +
(�1 � �2)� 2

4

� �2 = �1 + 3 +
�1 � �2

2
� 2�2 = 2�1 + 6 + �1 � �2

� 3�1 � 3�2 + 6 = 0

� �1 � �2 = �2 (1.73)

Solving equations (1.72) and (1.73) gives �1 = 2�105 A� �2 = 4�105 A

Thus� 
� = 2(�1 � �2) = �4 V

and �� = �1 = 2�105 A

R.P 1.9

Obtain the node voltages 
1, 
2 and 
3 for the following circuit.
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SOLUTION

We have a supernode as shown in Fig. R.P. 1.9(a). By inspection, we find that V2 = 12V.
Refer Fig. R.P. 1.9(b) for further analysis.

Figure R.P.1.9(a) Figure R.P.1.9(b) .

KVL clockwise to mesh 1 :

�
1 � 10 + 12 = 0 � 
1 = 2

KVL clockwise to mesh 2 :

�12 + 20 + 
3 = 0

� 
3 = �8 V

Hence� v1 = 2 V, v2 = 12 V, v3 = �8 V

R.P 1.10

Find the equivalent resistance ��� for the circuit shown in Fig. R.P.1.10.

Figure R.P. 1.10
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SOLUTION

The circuit is redrawn marking the nodes # to ! in Fig. R.P. 1.10(a). It can be seen that
the network consists of four identical stars :

(i) ��� �2� #	

(ii) �#� #2� #�

(iii) ��� �2� �!

(iv) 	&� 2&� &!

Converting each stars in to its equivalent delta, the network is redrawn as shown in
Fig. R.P. 1.10(b), noting that each resistance in delta is 100 � 3 = 300Ω, eliminating
nodes #, �, �, &.

Figure R.P.1.10(a) Figure R.P.1.10(b) .

Reducing the parallel resistors, we get the circuit as in Fig. R.P. 1.10(c).

Figure R.P.1.10(c)

Hence, there are two identical deltas �2� and 	2!. Converting them to their equivalent
stars, we get the circuit as shown in Fig. R.P.1.10(d).
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��� = ��� = ��� = ��
 =
300� 150

600
= 75 Ω

��� = ��� =
1502

600
= 37�5 Ω

Figure R.P.1.10(d) Figure R.P.1.10(e)

The circuit is further reduced to Fig. R.P. 1.10(e) and then to Fig. R.P. 1.10(f) and
(g). Then the equivalent resistance is

��� =
214�286� 300

514�286
= 125 Ω

Figure R.P.1.10(f) Figure R.P.1.10(g)

R.P 1.11

Obtain the equivalent resistance ��� for the circuit shown in Fig. R.P.1.11.

�

�

Figure R.P.1.11 Figure R.P.1.11(a)
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SOLUTION

The circuit is redrawn as shown Fig. 1.11(a), marking the nodes � to 2 to identify the
deltas in it. It contains 3 deltas �	#, 	�� and ��2 with 3 equal resistors of 30 Ω each. For

each delta, their equivalent star contains 3 resistors each of value
30

3
= 10Ω. Then the

circuit becomes as shown in Fig. R.P. 1.11(b) where 2 is isolated.
On simplification, we get the circuit as shown in Fig. R.P.1.11(c) and further reduced

to Fig. R.P.1.11(d).

Figure R.P.1.11(b) Figure R.P.1.11(c)

Figure R.P.1.11(d)

Then the equivalent ressitance,

��� = 10 + 13�33 + 10 = 33�33 Ω

R.P 1.12

Draw a network for the following mesh equations in matrix form :

	
�


5 + !5 �!5 0

�!5 8 + !8 �6
0 �6 10

�
��
	
�


I1
I2
I3

�
�� =

	
�


30 /�0�
0

�20 /�0�

�
��
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SOLUTION

The general form of the mesh equations in matrix form for a network having three mashes
is given by 	

�

Z11 �Z12 �Z13

�Z21 Z22 �Z23

�Z31 �Z32 Z33

�
��
	
�


I1
I2
I3

�
�� =

	
�


V1

�
-1

V2

�
-2

V3

�
-3

�
��

and, Z11 = Z10 + Z12 + Z13

where Z10 = Sum of the impedances confined to mesh 1 alone

Z12 = Sum of the impedances common to meshes 1 and 2

Z13 = Sum of the impedances common to meshes 1 and 3

Similiar difenitions hold good for Z22 and Z33� Also, Z�
 = Z
�

For the present problem,

Z11 = 5 + !5Ω

Z12 = Z21 = !5Ω

Z13 = Z31 = 0Ω

Z23 = Z32 = 6Ω

We know that, Z11 = Z10 + Z12 + Z13

� 5 + !5 = Z10 + !5 + 0

� Z10 = 5Ω

Similarly� Z22 = Z20 + Z21 + Z23

� 8 + !8 = Z20 + !5 + 6

� Z20 = 2 + !3Ω

Finally� Z33 = Z30 + Z31 + Z32

� 10 = Z30 + 0 + 6

� Z30 = 4Ω

Making use of the above impedances, we can configure a network as shown below :



Circuit Concepts and Network Simplification Techniques � 105

R.P 1.13

Draw a network for the following nodal equations in matrix form.

	
��

�

1

�!10 +
1

10

�
� 1

10

� 1

10

�
1

5
(1� !) +

1

10

�
�
���
	

 V�

V�

�
� =

	

 10 /0�

0

�
�

SOLUTION

The general form of the nodal equations in matrix form for a network having two nodes
is given by 

Y11 �Y12

�Y21 Y22

� 
V1

V2

�
=


I1
�
-1

I2
�
-2

�

where Y11 =Y10 +Y12 and Y22 = Y20 +Y21�

Y10 = sum of admittances connected at node 1 alone.

Y12 =Y21 = sum of admittances common to nodes 1 and 2.

Y20 = sum of admittances connected at node 2 alone�

For the present problem,

Y11 =
1

�!10 +
1

10
S

Y12 =Y21 =
1

10
S

Y22 =
1

5
(1� !) + 10 S

We know that, Y11 = Y10 +Y12

� 1

�!10 +
1

10
=Y10 +

1

10

� Y10 =
�1
!10

S

Similarly� Y22 = Y20 +Y21

� 1

5
(1� !) +

1

10
=Y20 +

1

10

� Y20 =
1

5
(1� !) S
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Making use of the above admittances, we can configure a network as shown below :

Exercise problems

E.P 1.1

Refer the circuit shown in Fig. E.P.1.1. Using mesh analysis, find the current delivered

by the source. Verify the result using nodal technique.

Figure E.P. 1.1

Ans : 5A

E.P 1.2

For the resistive circuit shown in Fig. E.P. 1.2. by using source transformation and mesh

analysis, find the current supplied by the 20 V source.

Figure E.P. 1.2

Ans : 2.125A
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E.P 1.3

Find the voltage 
 using nodal technique for the circuit shown in Fig. E.P. 1.3.

Figure E.P. 1.3

Ans : v = 5V

E.P 1.4

Refer the network shown in Fig. E.P. 1.4. Find the currents �1 and �2 using nodal analysis.

Figure E.P. 1.4

Ans : i1 = 1 A, i2 = �1 A

E.P 1.5

For the network shown in Fig. E.P. 1.5, find the currents through the resistors �1 and

�2 using nodal technique.

Figure E.P. 1.5
Ans : 3.33A, 6.67A
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E.P 1.6

Use the mesh-current method to find the branch currents �1� �2 and �3 in the circuit of

Fig. E.P. 1.6.

Figure E.P. 1.6

Ans : i1 = �1.72A, i2 = 1.08A , i3 = 2.8A

E.P 1.7

Refer the network shown in Fig. E.P. 1.7. Find the power delivered by the dependent

voltage source in the network.

Figure E.P. 1.7

Ans : �375 Watts

E.P 1.8

Find the current �� using (i) nodal analysis and (ii) mesh analysis.

Figure E.P. 1.8

Ans : I� =
150(3 + j4)

95 + j30
A
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E.P 1.9

Determine the current �� in the circuit shown in Fig. E.P. 1.9

Figure E.P. 1.9

Ans : i� = 3A

E.P 1.10

Determine the resistance between the terminals � � 	 of the network shown in Fig. E.P.

1.10.

Figure E.P. 1.10

Ans : 23.6 Ω

E.P 1.11

Determine the resistance between the points A and B in the network shown in Fig. E.P.

1.11.

Figure E.P. 1.11

Ans : 4.23 Ω
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E.P 1.12

Determine the current in the galvanometer branch of the bridge network shown in Fig.

E.P. 1.12.

Figure E.P. 1.12

Ans : 10.62μA



Many electric circuits are complex, but it is an engineer’s goal to reduce their complexity to
analyze them easily. In the previous chapters, we have mastered the ability to solve networks
containing independent and dependent sources making use of either mesh or nodal analysis. In
this chapter, we will introduce new techniques to strengthen our armoury to solve complicated
networks. Also, these new techniques in many cases do provide insight into the circuit’s operation
that cannot be obtained from mesh or nodal analysis. Most often, we are interested only in the
detailed performance of an isolated portion of a complex circuit. If we can model the remainder
of the circuit with a simple equivalent network, then our task of analysis gets greatly reduced and
simplified. For example, the function of many circuits is to deliver maximum power to load such
as an audio speaker in a stereo system. Here, we develop the required relationship betweeen a
load resistor and a fixed series resistor which can represent the remaining portion of the circuit.
Two of the theorems that we present in this chapter will permit us to do just that.

3.1 Superposition theorem

The principle of superposition is applicable only for linear systems. The concept of superposition
can be explained mathematically by the following response and excitation principle :

�1 � �1

�2 � �2

then� �1 + �2 � �1 + �2

The quantity to the left of the arrow indicates the excitation and to the right, the system
response. Thus, we can state that a device, if excited by a current �1 will produce a response
�1. Similarly, an excitation �2 will cause a response �2. Then if we use an excitation �1 + �2, we
will find a response �1 + �2.

The principle of superposition has the ability to reduce a complicated problem to several easier
problems each containing only a single independent source.
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Superposition theorem states that,

In any linear circuit containing multiple independent sources, the current or voltage at any

point in the network may be calculated as algebraic sum of the individual contributions of each

source acting alone.

When determining the contribution due to a particular independent source, we disable all
the remaining independent sources. That is, all the remaining voltage sources are made zero by
replacing them with short circuits, and all remaining current sources are made zero by replacing
them with open circuits. Also, it is important to note that if a dependent source is present, it must
remain active (unaltered) during the process of superposition.

Action Plan:

(i) In a circuit comprising of many independent sources, only one source is allowed to be active
in the circuit, the rest are deactivated (turned off).

(ii) To deactivate a voltage source, replace it with a short circuit, and to deactivate a current
source, replace it with an open circuit.

(iii) The response obtained by applying each source, one at a time, are then added algebraically
to obtain a solution.

Limitations: Superposition is a fundamental property of linear equations and, therefore, can be
applied to any effect that is linearly related to the cause. That is, we want to point out that,
superposition principle applies only to the current and voltage in a linear circuit but it cannot be
used to determine power because power is a non-linear function.

EXAMPLE 3.1

Find the current in the 6 Ω resistor using the principle of superposition for the circuit of Fig. 3.1.

Figure 3.1

SOLUTION

As a first step, set the current source to zero. That is, the current source appears as an open circuit
as shown in Fig. 3.2.

�1 =
6

3 + 6
=

6

9
A
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As a next step, set the voltage to zero by replacing it with a short circuit as shown in Fig. 3.3.

�2 =
2� 3

3 + 6
=

6

9
A

Figure 3.2 Figure 3.3

The total current � is then the sum of �1 and �2

� = �1 + �2 =
12

9
A

EXAMPLE 3.2
Find �� in the network shown in Fig. 3.4 using superposition.

Figure 3.4

SOLUTION

As a first step, set the current source to zero. That is, the current source appears as an open circuit
as shown in Fig. 3.5.

Figure 3.5
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��
� =

�6
(8 + 12)� 103

= �0�3 mA

As a second step, set the voltage source to zero. This means the voltage source in Fig. 3.4 is
replaced by a short circuit as shown in Figs. 3.6 and 3.6(a). Using current division principle,

�� =
��2

�1 +�2

where �1 = (12 kΩ��12 kΩ) + 12 kΩ

= 6 kΩ + 12 kΩ

= 18 kΩ

and �2 = 12 kΩ

� �� =
4� 10�3 � 12� 103

(12 + 18)� 103

= 1�6 mA Figure 3.6

Again applying the current division principle,

��
�� =

�� � 12

12 + 12
= 0�8 mA

Thus� �� = ��
� + ��

�� = �0�3 + 0�8 = 0�5 mA

Figure 3.6(a)
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EXAMPLE 3.3
Use superposition to find �� in the circuit shown in Fig. 3.7.

Figure 3.7

SOLUTION

As a first step, keep only the 12 V source active and rest of the sources are deactivated. That is,
2 mA current source is opened and 6 V voltage source is shorted as shown in Fig. 3.8.

��� =
12

(2 + 2)� 103

= 3 mA

Figure 3.8

As a second step, keep only 6 V source active. Deactivate rest of the sources, resulting in a
circuit diagram as shown in Fig. 3.9.
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Applying KVL clockwise to the upper loop, we get

�2� 103��
��� 2� 103��

��� 6 = 0

� ��
�� =

�6
4� 103

= �1�5 mA

Figure 3.9

As a final step, deactivate all the independent voltage sources and keep only 2 mA current
source active as shown in Fig. 3.10.

Figure 3.10

Current of 2 mA splits equally.

Hence� ��
��� = 1mA

Applying the superposition principle, we find that

�� = ��
� + ��

�� + ��
���

= 3� 1�5 + 1

= 2�5 mA
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EXAMPLE 3.4
Find the current � for the circuit of Fig. 3.11.

Figure 3.11

SOLUTION

We need to find the current � due to the two independent sources.
As a first step in the analysis, we will find the current resulting from the independent voltage

source. The current source is deactivated and we have the circuit as shown as Fig. 3.12.
Applying KVL clockwise around loop shown in Fig. 3.12, we find that

5�1 + 3�1 � 24 = 0

� �1 =
24

8
= 3A

As a second step, we set the voltage source to zero and determine the current �2 due to the
current source. For this condition, refer to Fig. 3.13 for analysis.

Figure 3.12 Figure 3.13

Applying KCL at node 1, we get

�2 + 7 =
�1 � 3�2

2
(3.1)

Noting that � �2 =
�1 � 0

3
we get, �1 = �3�2 (3.2)
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Making use of equation (3.2) in equation (3.1) leads to

�2 + 7 =
�3�2 � 3�2

2

� �2 = �7

4
A

Thus, the total current

� = �1 + �2

= 3� 7

4
A =

5

4
A

EXAMPLE 3.5
For the circuit shown in Fig. 3.14, find the terminal voltage ��� using superposition principle.

Figure 3.14SOLUTION

Figure 3.15

As a first step in the analysis, deactivate the in-
dependent current source. This results in a cir-
cuit diagram as shown in Fig. 3.15.

Applying KVL clockwise gives

�4 + 10� 0 + 3���1 + ���1 = 0

� 4���1 = 4

� ���1 = 1V

Next step in the analysis is to deactivate the
independent voltage source, resulting in a cir-
cuit diagram as shown in Fig. 3.16.

Applying KVL gives

�10� 2 + 3���2 + ���2 = 0

� 4���2 = 20

� ���2 = 5V

Figure 3.16
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According to superposition principle,

��� = ���1 + ���2

= 1 + 5 = 6V

EXAMPLE 3.6
Use the principle of superposition to solve for �� in the circuit of Fig. 3.17.

Figure 3.17

SOLUTION

According to the principle of superposition,

�� = ��1 + ��2

where ��1 is produced by 6A source alone in the circuit and ��2 is produced solely by 4A current
source.

To find ��1 , deactivate the 4A current source. This results in a circuit diagram as shown in
Fig. 3.18.

KCL at node �1 :

��1
2

+
��1 � 4��1

8
= 6

But ��1 =
��1
2

Hence�
��1
2

+
��1 � 4

�x1
2

8
= 6

� ��1
2

+
��1 � 2��1

8
= 6

� 4��1 + ��1 � 2��1 = 48

� ��1 =
48

3
= 16V

Figure 3.18
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To find ��2 , deactivate the 6A current source, resulting in a circuit diagram as shown in Fig.
3.19.

KCL at node �2 :

��2
8

+
��2 � (�4��2)

2
= 4

� ��2
8

+
��2 + 4��2

2
= 4 (3.3)

Applying KVL along dotted path, we get

��2 + 4��2 � 2��2 = 0

� ��2 = �2��2 or ��2 =
���2
2

(3.4)

Substituting equation (3.4) in equation (3.3), we get

��2
8

+

��2 + 4

����2
2

�
2

= 4

� ��2
8

+
��2 � 2��2

2
= 4

� ��2
8
� ��2

2
= 4

� ��2 � 4��2 = 32

� ��2 = �
32

3
V

Figure 3.19

Hence, according to the superposition principle,

�� = ��1 + ��2

= 16� 32

2
= 5�33V

EXAMPLE 3.7
Which of the source in Fig. 3.20 contributes most of the power dissipated in the 2 Ω resistor ?
The least ? What is the power dissipated in 2 Ω resistor ?

Figure 3.20



Circuit Theorems � 169

SOLUTION

The Superposition theorem cannot be used to identify the individual contribution of each source
to the power dissipated in the resistor. However, the superposition theorem can be used to find the
total power dissipated in the 2 Ω resistor.

Figure 3.21

According to the superposition principle,

�1 = ��1 + ��2

where ��1 = Contribution to �1 from 5V source alone.
and ��2 = Contribution to �1 from 2A source alone.

Let us first find ��1. This needs the deactivation of 2A source. Refer to Fig. 3.22.

��1 =
5

2 + 2�1
= 1�22A

Similarly to find ��2 we have to disable the 5V source by shorting it.

Referring to Fig. 3.23, we find that

��2 =
�2� 2�1

2 + 2�1
= �1�024 A

Figure 3.22 Figure 3.23
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Total current,

�1 = ��1 + ��2

= 1�22� 1�024

= 0�196 A

Thus� �2Ω = (0�196)2 � 2

= 0�0768 Watts

= 76�8mW

EXAMPLE 3.8
Find the voltage �1 using the superposition principle. Refer the circuit shown in Fig.3.24.

Figure 3.24

SOLUTION

According to the superposition principle,

�1 = � �

1 + � ��

1

where � �

1 is the contribution from 60V source alone and � ��

1 is the contribution from 4A current
source alone.

To find � �

1 , the 4A current source is opened, resulting in a circuit as shown in Fig. 3.25.

Figure 3.25
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Applying KVL to the left mesh:

30�� � 60 + 30 (�� � ��) = 0 (3.5)

Also �� = �0�4��
= �0�4 (���) = 0�4�� (3.6)

Substituting equation (3.6) in equation (3.5), we get

30�� � 60 + 30�� � 30� 0�4�� = 0

� �� =
60

48
= 1�25A

�� = 0�4�� = 0�4� 1�25

= 0�5A

Hence� � �

1 = (�� � ��)� 30

= 22�5 V

To find, � ��

1 , the 60V source is shorted as shown in Fig. 3.26.

Figure 3.26

Applying KCL at node a:

��
20

+
�� � � ��

1

10
= 4

� 30�� � 20� ��

1 = 800 (3.7)

Applying KCL at node b:

� ��

1

30
+
� ��

1 � ��
10

= 0�4��

Also� �� = 20�� � �� =
��
20

Hence�
� ��

1

30
+
� ��

1 � ��
10

=
0�4��
20

� � 7�2�� + 8� ��

1 = 0 (3.8)
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Solving the equations (3.7) and (3.8), we find that

� ��

1 = 60V

Hence �1 = � �

1 + � ��

1

= 22�5 + 60 = 82�5V

EXAMPLE 3.9

(a) Refer to the circuit shown in Fig. 3.27. Before the 10 mA current source is attached to
terminals �� 	, the current �� is found to be 1.5 mA. Use the superposition theorem to find
the value of �� after the current source is connected.

(b) Verify your solution by finding ��, when all the three sources are acting simultaneously.

Figure 3.27

SOLUTION

According to the principle of superposition,

�� = ��1 + ��2 + ��3

where ��1 , ��2 and ��3 are the contributions to �� from 20V source, 5 mA source and 10 mA source
respectively.

As per the statement of the problem,

��1 + ��2 = 1�5 mA

To find ��3 , deactivate 20V source and the 5 mA source. The resulting circuit diagram is
shown in Fig 3.28.

��3 =
10mA� 2k

18k + 2k
= 1 mA

Hence, total current

�� = ��1 + ��2 + ��3

= 1�5 + 1 = 2�5mA
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Figure 3.28

(b) Refer to Fig. 3.29
KCL at node y:

��
18� 103

+
�� � 20

2� 103
= (10+5)�10�3

Solving, we get �� = 45V�

Hence� �� =
��

18� 103
=

45

18� 103

= 2�5 mA

Figure 3.29

3.2 Thevenin’s theorem

In section 3.1, we saw that the analysis of a circuit may be greatly reduced by the use of su-
perposition principle. The main objective of Thevenin’s theorem is to reduce some portion of a
circuit to an equivalent source and a single element. This reduced equivalent circuit connected to
the remaining part of the circuit will allow us to find the desired current or voltage. Thevenin’s
theorem is based on circuit equivalence. A circuit equivalent to another circuit exhibits identical
characteristics at identical terminals.

Figure 3.30 A Linear two terminal network Figure 3.31 The Thevenin’s equivalent circuit

According to Thevenin’s theorem, the linear circuit of Fig. 3.30 can be replaced by the one
shown in Fig. 3.31 (The load resistor may be a single resistor or another circuit). The circuit to
the left of the terminals �� 	 in Fig. 3.31 is known as the Thevenin’s equivalent circuit.
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The Thevenin’s theorem may be stated as follows:
A linear two–terminal circuit can be replaced by an equivalent circuit consisting of a

voltage source V� in series with a resistor R�, Where V� is the open–circuit voltage at the termi-

nals and R� is the input or equivalent resistance at the terminals when the independent sources

are turned off or R� is the ratio of open–circuit voltage to the short–circuit current at the

terminal pair.

Action plan for using Thevenin’s theorem :

1. Divide the original circuit into circuit 
 and circuit �.

In general, circuit � is the load which may be linear or non-linear. Circuit 
 is the balance of
the original network exclusive of load and must be linear. In general, circuit 
 may contain
independent sources, dependent sources and resistors or other linear elements.

2. Separate the circuit 
 from circuit �.

3. Replace circuit 
 with its Thevenin’s equivalent.

4. Reconnect circuit � and determine the variable of interest (e.g. current ‘�’ or voltage ‘�’).

Procedure for finding R�:
Three different types of circuits may be encountered in determining the resistance, �� :

(i) If the circuit contains only independent sources and resistors, deactivate the sources and find
�� by circuit reduction technique. Independent current sources, are deactivated by opening
them while independent voltage sources are deactivated by shorting them.
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(ii) If the circuit contains resistors, dependent and independent sources, follow the instructions
described below:

(a) Determine the open circuit voltage ��	 with the sources activated.

(b) Find the short circuit current �
	 when a short circuit is applied to the terminals �� 

(c) �� =
��	
�
	

(iii) If the circuit contains resistors and only dependent sources, then

(a) ��	 = 0 (since there is no energy source)

(b) Connect 1A current source to terminals
��  and determine ���.

(c) �� =
���
1

Figure 3.32

For all the cases discussed above, the Thevenin’s equivalent circuit is as shown in Fig. 3.32.

EXAMPLE 3.10
Using the Thevenin’s theorem, find the current � through � = 2 Ω. Refer Fig. 3.33.

Figure 3.33

SOLUTION

Figure 3.34
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Since we are interested in the current � through �, the resistor � is identified as circuit B and
the remainder as circuit A. After removing the circuit B, circuit A is as shown in Fig. 3.35.

Figure 3.35

To find ��, we have to deactivate the independent voltage source. Accordingly, we get the
circuit in Fig. 3.36.

�� = (5 Ω��20 Ω) + 4 Ω

=
5� 20

5 + 20
+ 4 = 8 Ω

��

Figure 3.36

Referring to Fig. 3.35,

�50 + 25� = 0 � � = 2A

Hence ��� = ��	 = 20(�) = 40V

Thus, we get the Thevenin’s equivalent circuit which is as shown in Fig.3.37.

Figure 3.37 Figure 3.38

Reconnecting the circuit B to the Thevenin’s equivalent circuit as shown in Fig. 3.38, we get

� =
40

2 + 8
= 4A
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EXAMPLE 3.11
(a) Find the Thevenin’s equivalent circuit with respect to terminals ��  for the circuit shown

in Fig. 3.39 by finding the open-circuit voltage and the short–circuit current.
(b) Solve the Thevenin resistance by removing the independent sources. Compare your result

with the Thevenin resistance found in part (a).

Figure 3.39

SOLUTION

Figure 3.40

(a) To find ��	 :
Apply KCL at node 2 :

�2
60 + 20

+
�2 � 30

40
� 1�5 = 0

� �2 = 60 Volts

Hence� ��	 = � � 60

=

�
�2 � 0

60 + 20

�
� 60

= 60� 60

80
= 45 V
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To find �
	 :

�

Applying KCL at node 2:
�2
20

+
�2 � 30

40
� 1�5 = 0

� �2 = 30V

�
	 =
�2
20

= 1�5A

Therefore� �� =
��	
�
	

=
45

1�5
= 30 Ω

Figure 3.40 (a)

The Thevenin equivalent circuit with respect to the terminals �� is as shown in Fig. 3.40(a).
(b) Let us now find Thevenin resistance �� by deactivating all the independent sources,

�� ��

�� = 60 Ω��(40 + 20) Ω

=
60

2
= 30 Ω (verified)

It is seen that, if only independent sources are present, it is easy to find �� by deactivating all
the independent sources.
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EXAMPLE 3.12
Find the Thevenin equivalent for the circuit shown in Fig. 3.41 with respect to terminals �� .

Figure 3.41

SOLUTION

To find ��	 = ��� :

Figure 3.42

Applying KVL around the mesh of
Fig. 3.42, we get

�20 + 6�� 2�+ 6� = 0

� � = 2A

Since there is no current flowing in
10 Ω resistor, ��	 = 6� = 12 V
To find ��: (Refer Fig. 3.43)

Since both dependent and indepen-
dent sources are present, Thevenin resis-
tance is found using the relation,

�� =
��	
�
	

Applying KVL clockwise for mesh 1 :

�20 + 6�1 � 2�+ 6 (�1 � �2) = 0

� 12�1 � 6�2 = 20 + 2�

Since � = �1 � �2, we get

12�1 � 6�2 = 20 + 2 (�1 � �2)

� 10�1 � 4�2 = 20

Applying KVL clockwise for mesh 2 :

10�2 + 6 (�2 � �1) = 0

� � 6�1 + 16�2 = 0 Figure 3.43
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Solving the above two mesh equations, we get

�2 =
120

136
A � �
	 = �2 =

120

136
A

�� =
��	
�
	

=
12
120

136

= 13�6 Ω

EXAMPLE 3.13
Find �� in the circuit of Fig. 3.44 using Thevenin’s theorem.

Figure 3.44

SOLUTION

To find ��	 :
Since we are interested in the voltage across 2 kΩ resistor, it is removed from the circuit of

Fig. 3.44 and so the circuit becomes as shown in Fig. 3.45.

Figure 3.45

By inspection, �1 = 4 mA
Applying KVL to mesh 2 :

�12 + 6� 103 (�2 � �1) + 3� 103�2 = 0

� � 12 + 6� 103
�
�2 � 4� 10�3

�
+ 3� 103�2 = 0
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Solving, we get �2 = 4 mA

Applying KVL to the path 4 kΩ� a�b � 3 kΩ, we get

�4� 103�1 + ��	 � 3� 103�2 = 0

� ��	 = 4� 103�1 + 3� 103�2

= 4� 103 � 4� 10�3 + 3� 103 � 4� 10�3 = 28V

To find �� :
Deactivating all the independent sources, we get the circuit diagram shown in Fig. 3.46.

Figure 3.46

�� = ��� = 4 kΩ + (6 kΩ��3 kΩ) = 6 kΩ

Hence, the Thevenin equivalent circuit is as shown in Fig. 3.47.

Figure 3.47 Figure 3.48

If we connect the 2 kΩ resistor to this equivalent network, we obtain the circuit of Fig. 3.48.

�� = �
�
2� 103

�
=

28

(6 + 2)� 103
� 2� 103 = 7V

EXAMPLE 3.14
The wheatstone bridge in the circuit shown in Fig. 3.49 (a) is balanced when �2 = 1200 Ω. If the
galvanometer has a resistance of 30 Ω, how much current will be detected by it when the bridge
is unbalanced by setting �2 to 1204 Ω ?
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Figure 3.49(a)

SOLUTION

To find ��	 :
We are interested in the galavanometer current. Hence, it is removed from the circuit of Fig.

3.49 (a) to find ��	 and we get the circuit shown in Fig. 3.49 (b).

�1 =
120

900 + 600
=

120

1500
A

�2 =
120

1204 + 800
=

120

2004
A

Applying KVL clockwise along the path
1204Ω� � �� 900 Ω, we get

1204�2 � �� � 900�1 = 0

� �� = 1204�2 � 900�1

= 1204� 120

2004
� 900� 120

1500
= 95�8 mV

Figure 3.49(b)
To find �� :

Deactivate all the independent sources and look into the terminals � �  to determine the
Thevenin’s resistance.

Figure 3.49(c) Figure 3.49(d)
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�� = ��� = 600��900 + 800��1204
=

900� 600

1500
+

1204� 800

2004
= 840�64 Ω

Hence, the Thevenin equivalent circuit consists of the
95.8 mV source in series with 840.64Ω resistor. If we
connect 30Ω resistor (galvanometer resistance) to this
equivalent network, we obtain the circuit in Fig. 3.50. Figure 3.50

�� =
95�8� 10�3

840�64 + 30 Ω
= 110�03 �A

EXAMPLE 3.15
For the circuit shown in Fig. 3.51, find the Thevenin’s equivalent circuit between terminals � and .

Figure 3.51

SOLUTION

With � shorted, let �
	 = � . The circuit after
transforming voltage sources into their equiv-
alent current sources is as shown in Fig 3.52.
Writing node equations for this circuit,

At � : 0�2�� � 0�1 �	 + � = 3

At � : � 0�1�� + 0�3 �	 � 0�1 �� = 4

At  : � 0�1�	 + 0�2 �� � � = 1

As the terminals � and  are shorted �� = ��
and the above equations become

Figure 3.52
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0�2�� � 0�1 �	 + � = 3

�0�2�� + 0�3 �	 = 4

0�2�� � 0�1 �	 � 1 = 1

Solving the above equations, we get the short circuit current, � = �
	 = 1 A.
Next let us open circuit the terminals � and  and this makes � = 0. And the node equations

written earlier are modified to

0�2�� � 0�1 �	 = 3

� 0�1�� + 0�3 �	 � 0�1 �� = 4

�0�1�	 + 0�2 �� = 1

Figure 3.53

Solving the above equations, we get

�� = 30V and �� = 20V

Hence, ��� = 30� 20 = 10 V = ��	 = ��

Therefore �� =
��	
�
	

=
10

1
= 10Ω

The Thevenin’s equivalent is as shown in Fig 3.53

EXAMPLE 3.16

Refer to the circuit shown in Fig. 3.54. Find the Thevenin equivalent circuit at the terminals �� .

Figure 3.54

SOLUTION

To begin with let us transform 3 A current source and 10 V voltage source. This results in a
network as shown in Fig. 3.55 (a) and further reduced to Fig. 3.55 (b).
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Figure 3.55(a)

Again transform the 30 V source and following the reduction procedure step by step from
Fig. 3.55 (b) to 3.55 (d), we get the Thevenin’s equivalent circuit as shown in Fig. 3.56.

Figure 3.55(b) Figure 3.55(c)

Figure 3.55(d) Figure 3.56 Thevenin equivalent

circuit

EXAMPLE 3.17
Find the Thevenin equivalent circuit as seen from the terminals � � . Refer the circuit diagram
shown in Fig. 3.57.
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Figure 3.57
SOLUTION

Since the circuit has no independent sources, � = 0 when the terminals � �  are open. There-
fore, ��	 = 0.

The onus is now to find ��. Since ��	 = 0 and �
	 = 0, �� cannot be determined from

�� =
��	
�
	

. Hence, we choose to connect a source of 1 A at the terminals � �  as shown in Fig.

3.58. Then, after finding ���, the Thevenin resistance is,

�� =
���
1

KCL at node a : �� � 2�

5
+
��
10
� 1 = 0

Also� � =
��
10

Hence�
�� � 2

�
�a
10

�
5

+
��
10
� 1 = 0

� �� =
50

13
V

Hence� �� =
��
1

=
50

13
Ω

Alternatively one could find �� by connecting a 1V source at the terminals ��  and then find

the current from  to �. Then �� =
1

���
. The concept of finding �� by connecting a 1A source

between the terminals � �  may also be used for circuits containing independent sources. Then
set all the independent sources to zero and use 1A source at the terminals � �  to find ��� and

hence, �� =
���
1

.

For the present problem, the Thevenin equivalent circuit as seen between the terminals � � 

is shown in Fig. 3.58 (a).

Figure 3.58 Figure 3.58 (a)
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EXAMPLE 3.18
Determine the Thevenin equivalent circuit between the terminals ��  for the circuit of Fig. 3.59.

Figure 3.59

SOLUTION

As there are no independent sources in the circuit, we get ��	 = �� = 0�
To find ��, connect a 1V source to the terminals � �  and measure the current � that flows

from  to �. (Refer Fig. 3.60 a).

�� =
1

�
Ω

Figure 3.60(a)

Applying KCL at node a:

� = 0�5�� +
��
4

Since� �� = 1V

we get, � = 0�5 +
1

4
= 0�75 A

Hence� �� =
1

0�75
= 1�33 Ω

Figure 3.60(b)

The Thevenin equivalent circuit is shown in 3.60(b).

Alternatively, sticking to our strategy, let us connect 1A current source between the terminals

��  and then measure ��� (Fig. 3.60 (c)). Consequently, �� =
���
1

= ��� Ω�
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Applying KCL at node a:

0�5�� +
��
4

= 1� �� = 1�33V

Hence �� =
���
1

=
��
1

= 1�33 Ω

The corresponding Thevenin equivalent
circuit is same as shown in Fig. 3.60(b) Figure 3.60(c)

3.3 Norton’s theorem

An American engineer, E.L. Norton at Bell Telephone Laboratories, proposed a theorem similar
to Thevenin’s theorem.

Norton’s theorem states that a linear two-terminal network can be replaced by an

equivalent circuit consisting of a current source i� in parallel with resistor R� , where i�
is the short-circuit current through the terminals and R� is the input or equivalent resistance

at the terminals when the independent sources are turned off. If one does not wish to turn off

the independent sources, then R� is the ratio of open circuit voltage to short–circuit current

at the terminal pair.

Figure 3.61(a) Original circuit Figure 3.61(b) Norton’s equivalent circuit

Figure 3.61(b) shows Norton’s equivalent circuit as seen from the terminals � �  of the
original circuit shown in Fig. 3.61(a). Since this is the dual of the Thevenin circuit, it is clear that
� = �� and � =

��	
��

. In fact, source transformation of Thevenin equivalent circuit leads to

Norton’s equivalent circuit.
Procedure for finding Norton’s equivalent circuit:

(1) If the network contains resistors and independent sources, follow the instructions below:

(a) Deactivate the sources and find � by circuit reduction techniques.
(b) Find � with sources activated.

(2) If the network contains resistors, independent and dependent sources, follow the steps given
below:

(a) Determine the short-circuit current � with all sources activated.
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(b) Find the open-circuit voltage ��	.

(c) �� = � =
��	
�

(3) If the network contains only resistors and dependent sources, follow the procedure
described below:

(a) Note that � = 0.

(b) Connect 1A current source to the terminals ��  and find ���.

(c) �� =
���
1

Note: Also, since �� = ��	 and � = �
	

�� =
��	
�
	

= �

The open–circuit and short–circuit test are sufficient to find any Thevenin or Norton equiva-
lent.

3.3.1 PROOF OF THEVENIN’S AND NORTON’S THEOREMS

The principle of superposition is employed to provide the proof of Thevenin’s and Norton’s
theorems.

Derivation of Thevenin’s theorem:

Let us consider a linear circuit having two accessible terminals � � 	 and excited by an external
current source �. The linear circuit is made up of resistors, dependent and independent sources. For
the sake of simplified analysis, let us assume that the linear circuit contains only two independent
voltage sources �1 and �2 and two independent current sources �1 and �2. The terminal voltage �
may be obtained, by applying the principle of superposition. That is, � is made up of contributions
due to the external source and independent sources within the linear network.

Hence� � = �0�+ �1�1 + �2�2 + �3�1 + �4�2 (3.9)

= �0�+ 0 (3.10)

where 0 = �1�1 + �2�2 + �3�1 + �4�2

= contribution to the terminal voltage � by

independent sources within the linear network.

Let us now evaluate the values of constants �0 and 0.

(i) When the terminals � and 	 are open–circuited, � = 0 and � = ��	 = ��. Making use of
this fact in equation 3.10, we find that 0 = ��.
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(ii) When all the internal sources are deactivated, 0 = 0. This enforces equation 3.10 to
become

� = �0� = ���� �0 = ��

��

��

Figure 3.62 Current-driven circuit Figure 3.63 Thevenin’s equivalent circuit of Fig. 3.62

where �� is the equivalent resistance of the linear network as viewed from the terminals � � 	.
Also, �0 must be �� in order to obey the ohm’s law. Substuting the values of �0 and 0 in equation
3.10, we find that

� = ���+ �1

which expresses the voltage-current relationship at terminals � � 	 of the circuit in Fig. 3.63.
Thus, the two circuits of Fig. 3.62 and 3.63 are equivalent.

Derivation of Norton’s theorem:

Let us now assume that the linear circuit described earlier is driven by a voltage source � as shown
in Fig. 3.64.

The current flowing into the circuit can be obtained by superposition as

� = �0� + �0 (3.11)

where �0� is the contribution to � due to the external voltage source � and �0 contains the contri-
butions to � due to all independent sources within the linear circuit. The constants �0 and �0 are
determined as follows :

(i) When terminals �� 	 are short-circuited, � =
0 and � = ��
	. Hence from equation (3.11),
we find that � = �0 = ��
	, where �
	 is the
short-circuit current flowing out of terminal �,
which is same as Norton current �

Thus, �0 = ��
Figure 3.64

Voltage-driven circuit

(ii) Let all the independent sources within the linear network be turned off, that is �0=0. Then,
equation (3.11) becomes

� = �0�
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For dimensional validity, �0 must have the
dimension of conductance. This enforces �0 =
1

��

where �� is the equivalent resistance of the

linear network as seen from the terminals � � 	.
Thus, equation (3.11) becomes

� =
1

��

� � �
	

=
1

��

� � �

Figure 3.65 Norton’s equivalent of

voltage driven circuit

This expresses the voltage-current relationship at the terminals � � 	 of the circuit in Fig.
(3.65), validating that the two circuits of Figs. 3.64 and 3.65 are equivalents.

EXAMPLE 3.19
Find the Norton equivalent for the circuit of Fig. 3.66.

Figure 3.66

SOLUTION

As a first step, short the terminals � � . This
results in a circuit diagram as shown in Fig. 3.67.
Applying KCL at node a, we get

0� 24

4
� 3 + �
	 = 0

� �
	 = 9A

To find � , deactivate all the independent
sources, resulting in a circuit diagram as shown
in Fig. 3.68 (a). We find � in the same way as
�� in the Thevenin equivalent circuit.

Figure 3.67

� =
4� 12

4 + 12
= 3 Ω
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Figure 3.68(a) Figure 3.68(b)

Thus, we obtain Nortion equivalent circuit as shown in Fig. 3.68(b).

EXAMPLE 3.20
Refer the circuit shown in Fig. 3.69. Find the value of �� using Norton equivalent circuit. Take
� = 667 Ω.

Figure 3.69

SOLUTION

Since we want the current flowing through�, remove
� from the circuit of Fig. 3.69. The resulting circuit
diagram is shown in Fig. 3.70.
To find ��	 or � referring Fig 3.70(a) :

�� =
0

1000
= 0A

�
	 =
12

6000
A = 2 mA Figure 3.70

Figure 3.70(a)
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To find � :
The procedure for finding � is same that of ��

in the Thevenin equivalent circuit.

�� = � =
��	
�
	

To find ��	, make use of the circuit diagram shown
in Fig. 3.71. Do not deactivate any source.
Applying KVL clockwise, we get

Figure 3.71�12 + 6000�� + 2000�� + 1000�� = 0

� �� =
4

3000
A

� �oc = �� � 1000 =
4

3
V

Therefore� � =
��	
�
	

=

4

3
2� 10�3

= 667 Ω

The Norton equivalent circuit along with resistor � is as shown below:

�� =
�
	
2

=
2mA

2
= 1mA

Figure : Norton equivalent circuit with load R

EXAMPLE 3.21
Find �� in the network of Fig. 3.72 using Norton’s theorem.

Figure 3.72
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SOLUTION

We are interested in ��, hence the 2 kΩ resistor is removed from the circuit diagram of Fig. 3.72.
The resulting circuit diagram is shown in Fig. 3.73(a).

Figure 3.73(a) Figure 3.73(b)

To find � or �
	:
Refer Fig. 3.73(b). By inspection, �1 = 12 V
Applying KCL at node �2 :

�2 � �1
6 kΩ

+
�2
2 kΩ

+
�2 � �1
3 kΩ

= 0

Substituting �1 = 12 V and solving, we get

�2 = 6V

�
	 =
�1 � �2
3 kΩ

+
�1
4 kΩ

= 5 mA

To find � :
Deactivate all the independent sources (refer Fig. 3.73(c)).

Figure 3.73(c) Figure 3.73(d)



Circuit Theorems � 195

Referring to Fig. 3.73 (d), we get

� = ��� = 4 kΩ�� [3 kΩ + (6 kΩ��2 kΩ)] = 2�12 kΩ

Hence, the Norton equivalent circuit
along with 2 kΩ resistor is as shown in
Fig. 3.73(e).

�� =
�
	 ��

�+�

= 2�57mA
Figure 3.73(e)

EXAMPLE 3.22
Find �� in the circuit of Fig. 3. 74.

Figure 3.74

SOLUTION

Since we are interested in ��, the voltage across 4 kΩ resistor, remove this resistance from the
circuit. This results in a circuit diagram as shown in Fig. 3.75.

Figure 3.75
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To find �
	, short the terminals ��  :
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Constraint equation :
�1 � �2 = 4mA (3.12)

KVL around supermesh :

� 4 + 2� 103�1 + 4� 103�2 = 0 (3.13)

KVL around mesh 3 :

8� 103(�3 � �2) + 2� 103(�3 � �1) = 0

Since �3 = �
	, the above equation becomes,

8� 103(�
	 � �2) + 2� 103(�
	 � �1) = 0 (3.14)

Solving equations (3.12), (3.13) and (3.14) simultaneously, we get �
	 = 0�1333 mA.
To find � :
Deactivate all the sources in Fig. 3.75. This yields a circuit diagram as shown in Fig. 3.76.

Figure 3.76

� = 6 kΩ��10 kΩ
=

6� 10

6 + 10
= 3�75 kΩ

Hence, the Norton equivalent circuit is as shown
in Fig 3.76 (a).
To the Norton equivalent circuit, now connect the
4 kΩ resistor that was removed earlier to get the
network shown in Fig. 3.76(b).

Figure 3.76(a)
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�� = �
	 (� ���)

= �
	
��

� +�

= 258 mV

Figure 3.76(b) Norton equivalent circuit with R = 4 kΩ

EXAMPLE 3.23
Find the Norton equivalent to the left of the terminals ��  for the circuit of Fig. 3.77.

Figure 3.77

SOLUTION

To find �
	:

Note that ��� = 0 when the terminals ��  are short-circuited.

Then � =
5

500
= 10 mA

Therefore, for the right–hand portion of the circuit, �
	 = �10� = �100 mA.
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To find � or �� :

Writing the KVL equations for the left-hand mesh, we get

�5 + 500�+ ��� = 0 (3.15)

Also for the right-hand mesh, we get

��� = �25(10�) = �250�
Therefore � =

����
250

Substituting � into the mesh equation (3.15), we get

�5 + 500

�����
250

�
+ ��� = 0

� ��� = �5 V
� = �� � ��	

�
	
=
���
�
	

=
�5
�0�1 = 50 Ω

The Norton equivalent circuit is shown in
Fig 3.77 (a).

Figure 3.77 (a)

EXAMPLE 3.24
Find the Norton equivalent of the network shown in Fig. 3.78.

Figure 3.78
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SOLUTION

Since there are no independent sources present in the network of Fig. 3.78, � = �
	 = 0.
To find � , we inject a current of 1A between the terminals � � . This is illustrated in

Fig. 3.79.

Figure 3.79 Figure 3.79(a) Norton

equivalent circuit

KCL at node 1:

1 =
�1
100

+
�1 � �2

50
� 0�03�1 � 0�02�2 = 1

KCL at node 2: �2
200

+
�2 � �1

50
+ 0�1�1 = 0

� 0�08�1 + 0�025�2 = 0

Solving the above two nodal equations, we get

�1 = 10�64 volts � ��	 = 10�64 volts

Hence� � = �� =
��	
1

=
10�64

1
= 10�64 Ω

Norton equivalent circuit for the network shown in Fig. 3.78 is as shown in Fig. 3.79(a).

EXAMPLE 3.25
Find the Thevenin and Norton equivalent circuits for the network shown in Fig. 3.80 (a).

Figure 3.80(a)



Circuit Theorems � 201

SOLUTION

To find ��	 :
Performing source transformation on 5A current source, we get the circuit shown in

Fig. 3.80 (b).
Applying KVL around Left mesh :

�50 + 2�� � 20 + 4�� = 0

� �� =
70

6
A

Applying KVL around right mesh:

20 + 10�� + ��	 � 4�� = 0

� ��	 = �90 V
Figure 3.80(b)

To find �
	(referring Fig 3.80 (c)) :
KVL around Left mesh :

�50 + 2�� � 20 + 4 (�� � �
	) = 0

� 6�� � 4�
	 = 70

KVL around right mesh :

4 (�
	 � ��) + 20 + 10�� = 0

� 6�� + 4�
	 = �20

Figure 3.80(c)

Solving the two mesh equations simultaneously, we get �
	 = �11�25 A

Hence, �� = � =
��	
�
	

=
�90
�11�25 = 8 Ω

Performing source transformation on Thevenin equivalent circuit, we get the norton equivalent
circuit (both are shown below).

Thevenin equivalent circuit Norton equivalent circuit
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EXAMPLE 3.26

Figure 3.81

If an 8 kΩ load is connected to the terminals of the
network in Fig. 3.81, ��� = 16 V. If a 2 kΩ load is
connected to the terminals, ��� = 8V. Find ��� if a
20 kΩ load is connected across the terminals.

SOLUTION

Applying KVL around the mesh, we get (�� +��) � = ��	

If �� = 2 kΩ� � = 10 mA� ��	 = 20 + 0�01��

If �� = 10 kΩ� � = 6 mA� ��	 = 60 + 0�006��

Solving, we get ��	 = 120 V, �� = 10 kΩ.

If �� = 20 kΩ� � =
��	

(�� +��)
=

120

(20� 103 + 10� 103)
= 4 mA

3.4 Maximum Power Transfer Theorem

In circuit analysis, we are some times interested
in determining the maximum power that a circuit
can supply to the load. Consider the linear circuit
A as shown in Fig. 3.82.
Circuit A is replaced by its Thevenin equivalent
circuit as seen from � and  (Fig 3.83).
We wish to find the value of the load �� such that
the maximum power is delivered to it.

Figure 3.82 Circuit A with load ��

The power that is delivered to the load is given by

� = �2�� =

�
��

�� +��

�2
�� (3.16)
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Assuming that �� and �� are fixed for a given source, the maximum power is a function of
��. In order to determine the value of �� that maximizes �, we differentiate � with respect to
�� and equate the derivative to zero.

��

���

= � 2
�

�
(�� +��)

2 � 2 (�� +��)

(�� +��)
2

�
= 0

which yields �� = �� (3.17)

To confirm that equation (3.17) is a maximum,

it should be shown that
�2�

��2
�

� 0. Hence, maxi-

mum power is transferred to the load when�� is
equal to the Thevenin equivalent resistance ��.
The maximum power transferred to the load is
obtained by substituting �� = �� in equation
3.16.
Accordingly,

�max =
� 2
� ��

(2��)
2 =

� 2
�

4��

Figure 3.83 Thevenin equivalent circuit

is substituted for circuit A

The maximum power transfer theorem states that the maximum power delivered by a source

represented by its Thevenin equivalent circuit is attained when the load R� is equal to the

Thevenin resistance R�.

EXAMPLE 3.27
Find the load �� that will result in maximum power delivered to the load for the circuit of Fig.
3.84. Also determine the maximum power �max.

Figure 3.84

SOLUTION

Disconnect the load resistor ��. This results in a circuit diagram as shown in Fig. 3.85(a).
Next let us determine the Thevenin equivalent circuit as seen from �� .
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� =
180

150 + 30
= 1A

��	 = �� = 150� � = 150 V

To find��, deactivate the 180 V source. This results in the
circuit diagram of Fig. 3.85(b).

�� = ��� = 30 Ω��150 Ω
=

30� 150

30 + 150
= 25 Ω

Figure 3.85(a)

The Thevenin equivalent circuit connected to the
load resistor is shown in Fig. 3.86.
Maximum power transfer is obtained when
�� = �� = 25 Ω�
Then the maximum power is

�max =
� 2
�

4��

=
(150)2

4� 25
= 2�25 Watts

Figure 3.85(b)

The Thevenin source �� actually provides a total
power of

�� = 150� �

= 150�
�

150

25 + 25

�
= 450 Watts

Figure 3.86
Thus, we note that one-half the power is dissipated in ��.

EXAMPLE 3.28
Refer to the circuit shown in Fig. 3.87. Find the value of �� for maximum power transfer. Also
find the maximum power transferred to ��.

Figure 3.87
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SOLUTION

Disconnecting ��, results in a circuit diagram as shown in Fig. 3.88(a).

Figure 3.88(a)

To find ��, deactivate all the independent voltage sources as in Fig. 3.88(b).

Figure 3.88(b) Figure 3.88(c)

�� = ��� = 6 kΩ��6 kΩ��6 kΩ
= 2 kΩ

To find �� :
Refer the Fig. 3.88(d).
Constraint equation :

�3 � �1 = 12 V

By inspection, �2 = 3 V
KCL at supernode :

�3 � �2
6k

+
�1
6k

+
�1 � �2

6k
= 0

� �3 � 3

6k
+
�3 � 12

6k
+
�3 � 12� 3

6k
= 0

Figure 3.88(d)
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� �3 � 3 + �3 � 12 + �3 � 15 = 0

� 3�3 = 30

� �3 = 10

� �� = ��� = �3 = 10 V

Figure 3.88(e)

The Thevenin equivalent circuit connected to the load resistor �� is shown in Fig. 3.88(e).

�max = �2��

=

�
��
2��

�2
��

= 12�5 mW

Alternate method :
It is possible to find �max, without finding the Thevenin equivalent circuit. However, we have to
find ��. For maximum power transfer, �� = �� = 2 kΩ. Insert the value of �� in the original
circuit given in Fig. 3.87. Then use any circuit reduction technique of your choice to find power
dissipated in ��.

Refer Fig. 3.88(f). By inspection we find that, �2 = 3 V.

Figure 3.88(f)

Constraint equation :

�3 � �1 = 12

� �1 = �3 � 12

KCL at supernode :

�3 � �2
6k

+
�1 � �2

6k
+
�3
2k

+
�1
6k

= 0

� �3 � 3

6k
+
�3 � 12� 3

6k
+
�3
2k

+
�3 � 12

6k
= 0

� �3 � 3 + �3 � 15 + 3�3 + �3 � 12 = 0

� 6�3 = 30

� �3 = 5 V

Hence� �max =
� 2
3

��

=
25

2k
= 12�5 mW
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EXAMPLE 3.29
Find �� for maximum power transfer and the maximum power that can be transferred in the
network shown in Fig. 3.89.

Figure 3.89

SOLUTION

Disconnect the load resistor ��. This results in a circuit as shown in Fig. 3.89(a).

Figure 3.89(a)

To find ��, let us deactivate all the independent sources, which results the circuit as shown in
Fig. 3.89(b).

�� = ��� = 2 kΩ + 3 kΩ + 5 kΩ = 10 kΩ

For maximum power transfer �� = �� = 10 kΩ.
Let us next find ��	 or ��.
Refer Fig. 3.89 (c). By inspection, �1 = �2 mA & �2 = 1 mA.
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Figure 3.89(b)

Applying KVL clockwise to the loop 5 kΩ� 3 kΩ� 2 kΩ� �� , we get

�5k� �2 + 3k (�1 � �2) + 2k� �1 + �� = 0

� �5�103
�
1� 10�3

�
+3�103

��2� 10�3 � 1� 10�3
�
+2�103

��2� 10�3
�
+�� = 0

� � 5� 9� 4 + �� = 0

� �� = 18 V�

The Thevenin equivalent circuit with load resistor �� is as shown in Fig. 3.89 (d).

� =
18

(10 + 10)� 103
= 0�9 mA

Then,

�max = �� = (0�9 mA)2 � 10 kΩ

= 8�1 mW

Figure 3.89(c) Figure 3.89(d)

EXAMPLE 3.30
Find the maximum power dissipated in ��. Refer the circuit shown in Fig. 3.90.

Figure 3.90
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SOLUTION

Disconnecting the load resistor �� from the original circuit results in a circuit diagram as shown
in Fig. 3.91.

Figure 3.91
As a first step in the analysis, let us find ��. While finding ��, we have to deactivate all the

independent sources. This results in a network as shown in Fig 3.91 (a) :

Figure 3.91(a)

�� = ��� = [140 Ω��60 Ω] + 8 Ω

=
140� 60

140 + 60
+ 8 = 50 Ω�

For maximum power transfer, �� = �� = 50 Ω. Next step in the analysis is to find ��.
Refer Fig 3.91(b), using the principle of
current division,

�1 =
���2

�1 +�2

=
20� 170

170 + 30
= 17 A

�2 =
���1

�1 +�2
=

20� 30

170 + 30

=
600

200
= 3A

Figure 3.91(a)
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Applying KVL clockwise to the loop comprising of 50 Ω� 10 Ω� 8 Ω� �� , we get

50�2 � 10�1 + 8� 0 + �� = 0

� 50(3)� 10 (17) + �� = 0

� �� = 20 V

The Thevenin equivalent circuit with load resistor �� is
as shown in Fig. 3.91(c).

�� =
20

50 + 50
= 0�2A

�max = �2� � 50 = 0�04� 50 = 2W

Figure 3.91(c)

EXAMPLE 3.31
Find the value of �� for maximum power transfer in the circuit shown in Fig. 3.92. Also
find �max.

Figure 3.92

SOLUTION

Disconnecting �� from the original circuit, we get the network shown in Fig. 3.93.

Figure 3.93



Circuit Theorems � 211

Let us draw the Thevenin equivalent circuit as seen from the terminals � �  and then insert
the value of �� = �� between the terminals � � . To find ��, let us deactivate all independent
sources which results in the circuit as shown in Fig. 3.94.

Figure 3.94

�� = ���

= 8 Ω��2 Ω
=

8� 2

8 + 2
= 1�6 Ω

Next step is to find ��	 or ��.

By performing source transformation on the circuit shown in Fig. 3.93, we obtain the circuit
shown in Fig. 3.95.

Figure 3.95

Applying KVL to the loop made up of 20 V � 3 Ω� 2 Ω� 10 V � 5 Ω� 30 V, we get

�20 + 10�� 10� 30 = 0

� � =
60

10
= 6A
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Again applying KVL clockwise to the path 2 Ω� 10 V � �� , we get
2�� 10� �� = 0

� �� = 2�� 10

= 2(6)� 10 = 2 V

The Thevenin equivalent circuit with load resistor
�� is as shown in Fig. 3.95 (a).

�max = �2���

=
� 2
�

4��

= 625 mW
Figure 3.95(a) Thevenin equivalent

circuit

EXAMPLE 3.32
Find the value of �� for maximum power transfer. Hence find �max.

Figure 3.96

SOLUTION

Removing �� from the original circuit gives us the circuit diagram shown in Fig. 3.97.

Figure 3.97

To find ��	 :
KCL at node A :

���� � 0�9 + 10��� = 0

� ��� = 0�1 A

Hence� ��	 = 3
�
10���

�
= 3� 10� 0�1 = 3 V
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To find ��, we need to compute �
	 with all independent sources activated.
KCL at node A:

����� � 0�9 + 10��
�� = 0

� ��
�� = 0�1 A

Hence �
	 = 10��
�� = 10� 0�1 = 1 A

�� =
��	
�
	

=
3

1
= 3 Ω

Hence, for maximum power transfer �� = �� = 3 Ω.
The Thevenin equivalent circuit with �� = 3 Ω
inserted between the terminals �� gives the net-
work shown in Fig. 3.97(a).

�� =
3

3 + 3
= 0�5 A

�max = �2���

= (0�5)2 � 3

= 0.75 W
Figure 3.97(a)

EXAMPLE 3.33
Find the value of �� in the network shown that will achieve maximum power transfer, and deter-
mine the value of the maximum power.

Figure 3.98(a)
SOLUTION

Removing �� from the circuit of Fig. 3.98(a), we
get the circuit of Fig 3.98(b).

Applying KVL clockwise we get
�12 + 2� 103�+ 2� �

� = 0

Also � �

� = 1� 103�

Figure 3.98(b)

Hence� � 12 + 2� 103�+ 2
�
1� 103�

�
= 0

� =
12

4� 103
= 3 mA
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Applying KVL to loop 1 kΩ� 2�
�

� � � �, we get

1� 103�+ 2� �

� � �� = 0

� �� = 1� 103�+ 2
�
1� 103�

�
=
�
1� 103 + 2� 103

�
�

= 3� 103
�
3� 10�3

�
= 9 V

To find ��, we need to find �
	. While finding �
	,
none of the independent sources must be deacti-
vated.

Applying KVL to mesh 1:

�12 + ��
�� + 0 = 0

� ��
�� = 12

� 1� 103�1 = 12 � �1 = 12 mA

Applying KVL to mesh 2:

1� 103�2 + 2��
�� = 0

� 1� 103�2 = �24
�2 = �24 mA

Applying KCL at node a:

�
	 = �1 � �2

= 12 + 24 = 36 mA

Hence� �� =
��
�
	

=
��	
�
	

=
9

36� 10�3

= 250 Ω

For maximum power transfer, �� = �� = 250 Ω.
Thus, the Thevenin equivalent circuit with �� is
as shown in Fig 3.98 (c) :

�� =
9

250 + 250
=

9

500
A

�max = �2� � 250

=

�
9

500

�2

� 250

= 81 mW
Figure 3.98 (c) Thevenin equivalent circuit
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EXAMPLE 3.34
The variable resistor �� in the circuit of Fig. 3.99 is adjusted untill it absorbs maximum power
from the circuit.

(a) Find the value of ��.

(b) Find the maximum power.

Figure 3.99

SOLUTION

Disconnecting the load resistor �� from the original circuit, we get the circuit shown in
Fig. 3.99(a).

Figure 3.99(a)
KCL at node �1 :

�1 � 100

2
+
�1 � 13���

5
+
�1 � �2

4
= 0 (3.18)

Constraint equations :

��� =
100� �1

2
(3.19)

�2 � �1
4

= ��� (����	��� ��� �� �2) (3.20)

��� = �1 � �2 (��������� ������ 4 Ω) (3.21)
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From equations (3.20) and (3.21), we have

�2 � �1
4

= �1 � �2

� �2 � �1 = 4�1 � 4�2

� 5�1 � 5�2 = 0

� �1 = �2 (3.22)

Making use of equations (3.19) and (3.22) in (3.18), we get

�1 � 100

2
+
�2 � 13

(100� �1)

2
5

+
�1 � �1

4
= 0

� 5 (�1 � 100) + 2

�
�1 � 13

(100� �1)

2

�
= 0

� 5�1 � 500 + 2�1 � 13� 100 + 13�1 = 0

� 20�1 = 1800

� �1 = 90 Volts

Hence� �� = �2 = �1 = 90 Volts

We know that, �� =
��	
�
	

=
��
�
	

The short circuit current is calculated using the circuit shown below:

Here ���� =
100� �1

2
Applying KCL at node �1 :

�1 � 100

2
+
�1 � 13�

��

�

5
+
�1 � 0

4
= 0

� �1 � 100

2
+
�1 � 13

(100� �1)

2
5

+
�1
4

= 0
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Solving we get �1 = 80 volts = ����
Applying KCL at node a :

0� �1
4

+ �
	 = ����

� �
	 =
�1
4

+ ����

=
80

4
+ 80 = 100 A

Hence� �� =
��	
�
	

=
��
�
	

=
90

100
= 0�9 Ω

Hence for maximum power transfer,

�� = �� = 0�9 Ω

The Thevenin equivalent circuit with �� = 0�9 Ω
is as shown.

�� =
90

0�9 + 0�9
=

90

1�8

�max = �2� � 0�9

=

�
90

1�8

�2

� 0�9 = 2250W

EXAMPLE 3.35
Refer to the circuit shown in Fig. 3.100 :

(a) Find the value of �� for maximum power transfer.

(b) Find the maximum power that can be delivered to ��.

Figure 3.100
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SOLUTION

Removing the load resistor ��, we get the circuit diagram shown in Fig. 3.100(a). Let us proceed
to find ��.

Figure 3.100(a)

Constraint equation :
��� = �1 � �3

KVL clockwise to mesh 1 :

200 + 1 (�1 � �2) + 20 (�1 � �3) + 4�1 = 0

� 25�1 � �2 � 20�3 = �200
KVL clockwise to mesh 2 :

14��� + 2 (�2 � �3) + 1 (�2 � �1) = 0

� 14 (�1 � �3) + 2 (�2 � �3) + 1 (�2 � �1) = 0

� 13�1 + 3�2 � 16�3 = 0

KVL clockwise to mesh 3 :

2 (�3 � �2)� 100 + 3�3 + 20 (�3 � �1) = 0

� � 20�1 � 2�2 + 25�3 = 100

Solving the mesh equations, we get

�1 = �2�5A� �3 = 5A

Applying KVL clockwise to the path comprising of �� � 20 Ω, we get

�� � 20��� = 0

� �� = 20���

= 20 (�1 � �3)

= 20 (�2�5� 5)

= �150 V
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Next step is to find ��.

�� =
��	
�
	

=
��
�
	

When terminals ��  are shorted, ���� = 0. Hence, 14 ���� is also zero.

KVL clockwise to mesh 1 :

200 + 1 (�1 � �2) + 4�1 = 0

� 5�1 � �2 = �200

KVL clockwise to mesh 2 :

2 (�2 � �3) + 1 (�2 � �1) = 0

� � �1 + 3�2 � 2�3 = 0

KVL clockwise to mesh 3 :

�100 + 3�3 + 2 (�3 � �2) = 0

� � 2�2 + 5�3 = 100
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Solving the mesh equations, we find that

�1 = �40A� �3 = 20A�

� �
	 = �1 � �3 = �60A
�� =

��
�
	

=
�150
�60 = 2�5 Ω

For maximum power transfer, �� = �� = 2�5 Ω. The Thevenin equivalent circuit with �� is
as shown below :

�max = �21��

=

�
150

2�5 + 2�5

�2
� 2�5

= 2250W

EXAMPLE 3.36
A practical current source provides 10 W to a 250 Ω load and 20 W to an 80 Ω load. A resistance
��, with voltage �� and current ��, is connected to it. Find the values of ��, �� and �� if
(a) ���� is a maximum, (b) �� is a maximum and (c) �� is a maximum.

SOLUTION

Load current calculation:

10W to 250 Ω corresponds to �� =

	
10

250
= 200 mA

20W to 80 Ω corresponds to �� =

	
20

80
= 500 mA

Using the formula for division of current between two parallel branches :

�2 =
���1

�1 +�2

In the present context, 0�2 =
��

� + 250
(3.23)

and 0�5 =
��

� + 80
(3.24)
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Solving equations (3.23) and (3.24), we get

� = 1�7 A

� = 33�33 Ω

(a) If ���� is maximum,

�� = � = 33�33 Ω

�� = 1�7� 33�33

33�33 + 33�33
= 850 mA

�� = ���� = 850� 10�3 � 33�33

= 28�33 V

(b) �� = � (� ����) is a maximum when � ���� is a maximum, which occurs when
�� =�.

Then, �� = 0 and

�� = 1�7��

= 1�7� 33�33

= 56�66 V

(c) �� =
��

� +��

is maxmimum when �� = 0 Ω

� �� = 1�7A and �� = 0 V

3.5 Sinusoidal steady state analysis using superposition, Thevenin and
Norton equivalents

Circuits in the frequency domain with phasor currents and voltages and impedances are analogous
to resistive circuits.

To begin with, let us consider the principle of superposition, which may be restated as follows :
For a linear circuit containing two or more independent sources, any circuit voltage or

current may be calculated as the algebraic sum of all the individual currents or voltages caused

by each independent source acting alone.

Figure 3.101 Thevenin equivalent circuit Figure 3.102 Norton equivalent circuit
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The superposition principle is particularly useful if a circuit has two or more sources acting
at different frequencies. The circuit will have one set of impedance values at one frequency and a
different set of impedance values at another frequency. Phasor responses corresponding to differ-
ent frequencies cannot be superposed; only their corresponding sinusoids can be superposed. That
is, when frequencies differ, the principle of superposition applies to the summing of time domain
components, not phasors. Within a component, problem corresponding to a single frequency,
however phasors may be superposed.

Thevenin and Norton equivalents in phasor circuits are found exactly in the same manner
as described earlier for resistive circuits, except for the subtitution of impedance Z in place of
resistance � and subsequent use of complex arithmetic. The Thevenin and Norton equivalent
circuits are shown in Fig. 3.101 and 3.102.

The Thevenin and Norton forms are equivalent if the relations

(a) Z� = Z (b)V� = ZI

hold between the circuits.
A step by step procedure for finding the Thevenin equivalent circuit is as follows:

1. Identify a seperate circuit portion of a total circuit.

2. Find V� = V�	 at the terminals.

3. (a) If the circuit contains only impedances and independent sources, then deactivate all the
independent sources and then find Z� by using circuit reduction techniques.

(b) If the circuit contains impedances, independent sources and dependent sources, then
either short–circuit the terminals and determine I
	 from which

Z� =
V�	

I
	

or deactivate the independent sources, connect a voltage or current source at the terminals, and
determine both V and I at the terminals from which

Z� =
V

I

A step by step procedure for finding Norton equivalent circuit is as follows:

(i) Identify a seperate circuit portion of the original circuit.

(ii) Short the terminals after seperating a portion of the original circuit and find the current
through the short circuit at the terminals, so that I = I
	.

(iii) (a) If the circuit contains only impedances and independent sources, then deactivate all the
independent sources and then find Z = Z� by using circuit reduction techniques.

(b) If the circuit contains impedances, independent sources and one or more dependent

sources, find the open–circuit voltage at the terminals, V�	, so that Z = Z� =
V�	

I
	
�
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EXAMPLE 3.37
Find the Thevenin and Norton equivalent circuits at the terminals � �  for the circuit in
Fig. 3.103.

Figure 3.103

SOLUTION

As a first step in the analysis, let us find V��

Using the principle of current division,

I� =
8 (4 /0� )

8 + �10� �5
=

32

8 + �5

V� = I�(�10) =
�320

8 + �5
= 33�92 /58� V

To find Z�, deactivate all the independent sources. This results in a circuit diagram as shown
in Fig. 3.103 (a).

Figure 3.103(a) Figure 3.103(b) Thevenin equivalent circuit
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Z� = �10�� (8� �5) Ω

=
(�10)(8� �5)

�10 + 8� �5

= 10 /26� Ω

The Thevenin equivalent circuit as
viewed from the terminals � �  is
as shown in Fig 3.103(b). Performing
source transformation on the Thevenin
equivalent circuit, we get the Norton
equivalent circuit.

Figure : Norton equivalent circuit

I =
V�

Z�
=

33�92 /58�

10 /26�

= 3�392 /32� A

Z = Z� = 10 /26� Ω

EXAMPLE 3.38
Find �� using Thevenin’s theorem. Refer to the circuit shown in Fig. 3.104.

Figure 3.104

SOLUTION

Let us convert the circuit given in Fig. 3.104 into a frequency domain equiavalent or phasor circuit
(shown in Fig. 3.105(a)).  = 1

10 cos (�� 45�) � 10 /�45� V

5 sin (�+ 30�) = 5 cos (�� 60�) � 5 /�60� V

� = 1H� �  � = � � 1� 1 = �1 Ω

� = 1F� 1

�  �
=

1

� � 1� 1
= ��1 Ω
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Figure 3.105(a)

Disconnecting the capicator from the original circuit, we get the circuit shown in
Fig. 3.105(b). This circuit is used for finding V�.

Figure 3.105(b)
KCL at node a :

V� � 10 /�45�
3

+
V� � 5 /�60�

�1
= 0

Solving� V� = 4�97 /�40�54�

To find Z� deactivate all the independent sources
in Fig. 3.105(b). This results in a network as
shown in Fig. 3.105(c) :

Figure 3.105(c)

Z� = Z�� = 3Ω���1 Ω
=

�3

3 + �
=

3

10
(1 + �3) Ω

The Thevenin equivalent circuit along with the capicator
is as shown in Fig 3.105(d).

V� =
V�

Z� � �1
(��1)

=
4�97 /�40�54�
0�3(1 + �3)� �1

(��1)
= 15�73 /247�9� V

Hence� �� = 15�73 cos (�+ 247�9�) V
Figure 3.105(d) Thevenin equivalent circuit
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EXAMPLE 3.39
Find the Thevenin equivalent circuit of the circuit shown in Fig. 3.106.

Figure 3.106

SOLUTION

Since terminals ��  are open,

V� = I
 � 10

= 20 /0� V

Applying KVL clockwise for the mesh on the right hand side of the circuit, we get

�3V� + 0 (�10) +V�	 �V� = 0

V�	 = 4V�

= 80 /0� V

Let us transform the current source with 10 Ω parallel resistance to a voltage source with 10 Ω
series resistance as shown in figure below :

To find Z�, the independent voltage source is deactivated and a current source of I A is
connected at the terminals as shown below :
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Applying KVL clockwise we get,

�V�

� � 3V�

� � �10I+V� = 0

� �4V�

� � �10I+V� = 0

Since V�

� = 10I

we get � 40I� �10I = �V�

Hence� Z� =
V�

I
= 40 + �10Ω

Hence the Thevenin equivalent circuit is as shown
in Fig 3.106(a) : Figure 3.106(a)

EXAMPLE 3.40
Find the Thevenin and Norton equivalent circuits for the circuit shown in Fig. 3.107.

Figure 3.107

SOLUTION

The phasor equivalent circuit of Fig. 3.107 is shown in Fig. 3.108.
KCL at node a :

V�	 � 2V�	

�10
� 10 +

V�	

��5 = 0

� V�	 = �� 100
3

=
100

3
/�90� V
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Figure 3.108

To find I
	, short the terminals ��  of Fig. 3.108 as in Fig. 3.108(a).

Figure 3.108 (a) Figure 3.108 (b)

Since V�	 = 0, the above circuit takes the form shown in Fig 3.108 (b).
I
	 = 10 /0� A

Hence� Z� =
V�	

I
	
=

100

3
/�90�

10 /0�
=

10

3
/�90� Ω

The Thevenin equivalent and the Norton equivalent circuits are as shown below.

Figure Thevenin equivalent Figure Norton equivalent

EXAMPLE 3.41
Find the Thevenin and Norton equivalent circuits in frequency domain for the network shown in
Fig. 3.109.
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Figure 3.109

SOLUTION

Let us find V� = V�� using superpostion theorem.
(i) V�� due to 100 /0�

I1 =
100 /0�

��300 + �100
=

100

��200A
V��1 = I1 (�100)

=
100

��200 (�100) = �50 /0� Volts

(ii) V�� due to 100 /90�
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I2 =
100 /90�

�100� �300

V��2 = I2 (��300)
=

100 /90�

�100� �300
(��300) = �150 V

Hence� V� =V��1 +V��2

= �50 + �150

= 158�11 /108�43� V

To find Z�, deactivate all the independent sources.

Z� = �100 Ω�� � �300 Ω

=
�100(��300)
�100� �300

= �150 Ω

Hence the Thevenin equivalent circuit is as shown in Fig. 3.109(a). Performing source trans-
formation on the Thevenin equivalent circuit, we get the Norton equivalent circuit.

I =
V�

Z�
=

158�11 /108�43�

150 /90�
= 1�054 /18�43� A

Z = Z� = �150 Ω

The Norton equivalent circuit is as shown in Fig. 3.109(b).

Figure 3.109(a) Figure 3.109(b)
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3.6 Maximum power transfer theorem

We have earlier shown that for a resistive network, maximum power is transferred from a source to
the load, when the load resistance is set equal to the Thevenin resistance with Thevenin equivalent
source. Now we extend this result to the ac circuits.

Figure 3.110 Linear circuit Figure 3.111 Thevenin equivalent circuit

In Fig. 3.110, the linear circuit is made up of impedances, independent and dependent sources.
This linear circuit is replaced by its Thevenin equivalent circuit as shown in Fig. 3.111. The load
impedance could be a model of an antenna, a TV, and so forth. In rectangular form, the Thevenin
impedance Z� and the load impedance Z� are

Z� = �� + �!�

and Z� = �� + �!�

The current through the load is

I =
V�

Z� + Z�
=

V�

(�� + �!�) + (�� + �!�)

The phasors I and V� are the maximum values. The corresponding �"# values are obtained
by dividing the maximum values by

�
2. Also, the �"# value of phasor current flowing in the

load must be taken for computing the average power delivered to the load. The average power
delivered to the load is given by

� =
1

2
�I�2��

=
�V��2�L

2

(�� +��)
2 (!� +!�)

2 (3.25)

Our idea is to adjust the load parameters �� and !� so that � is maximum. To do this, we

get
$�

$��

and
$�

$!�

equal to zero.
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$�

$!�

=
�����2�� (!� +!�)


(�� +��)
2 + (!� +!�)

2
�2

$�

$��

=
����2



(�� +��)

2 + (!� +!�)
2 � 2�� (�� +��)

�
2


(�� +��)

2 + (!� +!�)
2
�2

Setting
$�

$!�

= 0 gives

!� = �!� (3.26)

and Setting
$�

$��

= 0 gives

�� =

�
�2
� + (!� +!�)

2 (3.27)

Combining equations (3.26) and (3.27), we can conclude that for maximum average power
transfer, Z� must be selected such that !� = �!� and �� = ��. That is the maximum aver-
age power of a circuit with an impedance Z� that is obtained when Z� is set equal to complex
conjugate of Z�.

Setting �� = �� and !� = �!� in equation (3.25), we get the maximum average power as

� =
����2
8��

In a situation where the load is purely real, the condition for maximum power transfer is
obtained by putting !� = 0 in equation (3.27). That is,

�� =
�
�2
� +!2

� = �Z��
Hence for maximum average power transfer to a purely resistive load, the load resistance is

equal to the magnitude of Thevenin impedance.

3.6.1 Maximum Power Transfer When Z is Restricted

Maximum average power can be delivered to Z� only if Z� = Z�

� . There are few situations in
which this is not possible. These situations are described below :

(i) �� and !� may be restricted to a limited range of values. With this restriction,
choose !� as close as possible to �!� and then adjust �� as close as possible to�
�2
� + (!� +!�)

2�

(ii) Magnitude of Z� can be varied but its phase angle cannot be. Under this restriction,
greatest amount of power is transferred to the load when [Z�] = �Z��.

Z�

t is the complex conjugate of Zt.
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EXAMPLE 3.42
Find the load impedance that transfers the maximum power to the load and determine the maxi-
mum power quantity obtained for the circuit shown in Fig. 3.112.

Figure 3.112

SOLUTION

We select, Z� = Z�

� for maximum power transfer.

Hence Z� = 5 + �6

I =
10 /0�

5 + 5
= 1 /0�

Hence, the maximum average power transfered to the
load is

� =
1

2
�I�2��

=
1

2
(1)2 � 5 = 2�5W

EXAMPLE 3.43
Find the load impedance that transfers the maximum average power to the load and determine the
maximum average power transferred to the load Z� shown in Fig. 3.113.

Figure 3.113
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SOLUTION

The first step in the analysis is to find the Thevenin equivalent circuit by disconnecting the load
Z�. This leads to a circuit diagram as shown in Fig. 3.114.

Figure 3.114

Hence V� =V�	 = 4/0� � 3

= 12 /0� Volts(RMS)

To find Z�, let us deactivate all the independent sources of Fig. 3.114. This leads to a circuit
diagram as shown in Fig 3.114 (a):

Z� = 3 + �4 Ω

Figure 3.114 (a) Figure 3.115

The Thevenin equivalent circuit with Z� is as shown in Fig. 3.115.
For maximum average power transfer to the load, Z� = Z�

� = 3� �4.

I� =
12 /0�

3 + �4 + 3� �4
= 2 /0� A(RMS)

Hence, maximum average power delivered to the load is

� = ����2�� = 4(3) = 12 W

It may be noted that the scaling factor
1

2
is not taken since the phase current is already

expressed by its �"# value.
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EXAMPLE 3.44

Refer the circuit given in Fig. 3.116. Find the value of �� that will absorb the maximum average
power.

Figure 3.116

SOLUTION

Disconnecting the load resistor �� from the original circuit diagram leads to a circuit diagram as
shown in Fig. 3.117.

Figure 3.117

V� =V�	 = I1 (�20)

=
150 /30� � �20

(40� �30 + �20)

= 72�76 /134� Volts�

To find Z�, let us deactivate all the independent sources present in Fig. 3.117 as shown in
Fig 3.117 (a).

Z� = (40� �30) ���20
=

�20 (40� �30)

�20 + 40� �30
= (9�412 + �22�35) Ω
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The Value of �� that will absorb the maximum
average power is

�� = �Z�� =

(9�412)2 + (22�35)2

= 24�25 Ω

The Thevenin equivalent circuit with �� inserted
is as shown in Fig 3.117 (b).
Maximum average power absorbed by �� is

�max =
1

2
����2��

where I� =
72�76 /134�

(9�412 + �22�35 + 24�25)

= 1�8 /100�2� A

� �max =
1

2
(1�8)2 � 24�25

= 39�29 W

Figure 3.117 (a)

Figure 3.117 (b) Thevenin equivalent circuit

EXAMPLE 3.45

For the circuit of Fig. 3.118: (a) what is the value of %� that will absorb the maximum average
power? (b) what is the value of maximum power?

Figure 3.118

SOLUTION

Disconnecting Z� from the original circuit we get the circuit as shown in Fig. 3.119. The first
step is to find V�.
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Figure 3.119

V� =V�	 = I1 (��10)

=

�
120 /0�

10 + �15� �10

�
(��10)

= 107�33 /�116�57� V

The next step is to find Z�. This re-
quires deactivating the independent
voltage source of Fig. 3.119.

Z� = (10 + �15) �� (��10)

=
��10 (10 + �15)

��10 + 10 + �15

= 8� �14 Ω

The value of Z� for maximum average power absorbed is

Z�

� = 8 + �14 Ω

The Thevenin equivalent circuit along with Z� = 8 + �14 Ω is as shown below:

I� =
107�33 / �116�57�
8� �14 + 8 + �14

=
107�33

16
/�116�57� 


Hence� �max =
1

2
����2��

=
1

2

�
107�33

16

�2

� 8

= 180 Walts
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EXAMPLE 3.46

(a) For the circuit shown in Fig. 3.120, what is the value of Z� that results in maximum average
power that will be transferred to Z� ? What is the maximum power ?

(b) Assume that the load resistance can be varied between 0 and 4000 Ω and the capacitive
reactance of the load can be varied between 0 and �2000 Ω. What settings of �� and !�

transfer the most average power to the load ? What is the maximum average power that can
be transferred under these conditions?

Figure 3.120

SOLUTION

(a) If there are no constraints on�� and!�, the load indepedance Z� = Z�

� = (3000��4000) Ω.
Since the voltage source is given in terms of its �"# value, the average maximum power

delivered to the load is

�max = �I��2��

where I� =
10 /0�

3000 + �4000 + 3000� �4000

=
10

2� 3000
A

� �max = �I��2��

=
100

4� (3000)2
� 3000

= 8�33 mW

(b) Since �� and !� are restricted, we first set !� as close to �4000 Ω as possible; hence

!� = �2000 Ω. Next we set �� as close to
�
�2
� + (!� +!�)

2 as possible.

Thus, �� =
�
30002 + (�2000 + 4000)2 = 3605�55 Ω

Since �� can be varied between 0 to 4000 Ω, we can set �� to 3605�55 Ω. Hence Z� is
adjusted to a value

Z� = 3605�55� �2000 Ω�
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I� =
10 /0�

3000 + �4000 + 3605�55� �2000

= 1�4489 /�16�85� mA

The maximum average power delivered
to the load is

�max = �I��2��

=
�
1�4489� 10�3

�2 � 3605�55

= 7�57 mW

Note that this is less than the power that can be delivered if there are no constraints on ��

and !�.

EXAMPLE 3.47
A load impedance having a constant phase angle of �45� is connected across the load terminals
� and  in the circuit shown in Fig. 3.121. The magnitude of Z� is varied until the average power
delivered, which is the maximum possible under the given restriction.

(a) Specify Z� in rectangular form.

(b) Calculate the maximum average power delivered under this condition.

Figure 3.121

SOLUTION

Since the phase angle of Z� is fixed at �45�, for maximum power transfer to Z� it is mandatory
that

�Z�� = �Z��
=

(3000)2 + (4000)2

= 5000 Ω�

Hence� Z� = �Z�� /�45�

=
5000�

2
� �

5000�
2
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I� =
10 /0�

(3000 + 3535�53) + �(4000� 3535�53)

= 1�526 /�4�07� mA

�max = �I��2��

=
�
1�526� 10�3

�2 � 3535�53

= 8�23 mW

This power is the maximum average power that can be delivered by this circuit to a load
impedance whose angle is constant at �45�. Again this quantity is less than the maximum
power that could have been delivered if there is no restriction on Z�. In example 3.46 part (a),
we have shown that the maximum power that can be delivered without any restrictions on Z�
is 8.33 mW.

3.7 Reciprocity theorem

The reciprocity theorem states that in a linear bilateral single source circuit, the ratio of exci-

tation to response is constant when the positions of excitation and response are interchanged.

Conditions to be met for the application of reciprocity theorem :

(i) The circuit must have a single source.

(ii) Initial conditions are assumed to be absent in the circuit.

(iii) Dependent sources are excluded even if they are linear.

(iv) When the positions of source and response are interchanged, their directions should be marked
same as in the original circuit.

EXAMPLE 3.48
Find the current in 2 Ω resistor and hence verify reciprocity theorem.

Figure 3.122
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SOLUTION

The circuit is redrawn with markings as shown in Fig 3.123 (a).

Figure 3.123 (a)

Then� �1 = (8�1 + 2�1)�1 = 1�6Ω

�2 = 1�6 + 4 = 5�6Ω

�3 = (5�6�1 + 4�1)�1 = 2�3333Ω

Current supplied by the source =
20

4 + 2�3333
= 3�16 A

Current in branch � = ��� = 3�16� 4

4 + 4 + 1�6
= 1�32 A

Current in 2Ω� �1 = 1�32� 8

10
= 1�05 A

Verification using reciprocity theorem
The circuit is redrawn by interchanging the position of excitation and response as shown in
Fig 3.123 (b).

Figure 3.123 (b)
Solving the equivalent resistances,

�4 = 2Ω� �5 = 6Ω� �6 = 3�4286Ω

Now the current supplied by the source

=
20

3�4286 + 2
= 3�6842A
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Therefore,
�	� = 3�6842� 8

8 + 6
= 2�1053A

�2 =
2�1053

2
= 1�05A

As �1 = �2 = 1�05 A, reciprocity theorem is verified.

EXAMPLE 3.49
In the circuit shown in Fig. 3.124, find the current through 1�375 Ω resistor and hence verify
reciprocity theorem.

Figure 3.124

SOLUTION

Figure 3.125

KVL clockwise for mesh 1 :
6�375�1 � 2�2 � 3�3 = 0

KVL clockwise for mesh 2 :
�2�1 + 14�2 � 10�3 = 0

KVL clockwise for mesh 3 :
�3�1 � 10�2 + 14�3 = �10
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Putting the above three mesh equations in matrix form, we get�
� 6�375 �2 �3

�2 14 �10
�3 �10 14

�
�
�
� �1
�2
�3

�
� =

�
� 0

0
�10

�
�

Using Cramer’s rule, we get
�1 = �2A

Negative sign indicates that the assumed direction of current flow should have been the other way.

Verification using reciprocity theorem :
The circuit is redrawn by interchanging the positions of excitation and response. The new circuit
is shown in Fig. 3.126.

Figure 3.126
The mesh equations in matrix form for the circuit shown in Fig. 3.126 is�

� 6�375 �2 3
�2 14 10
3 10 14

�
�
�
� � �1
� �2
� �3

�
� =

�
� 10

0
0

�
�

Using Cramer’s rule, we get
� �3 = �2 A

Since �1 = � �3 = �2 A, the reciprocity theorem is verified.

EXAMPLE 3.50
Find the current I� in the �2 Ω impedance and hence verify reciprocity theorem.

Figure 3.127
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SOLUTION

With reference to the Fig. 3.127, the current through �2 Ω impepance is found using series�parallel
reduction techniques.

Total impedance of the circuit is

Z� = (2 + �3) + (��5)��(3 + �2)

= 2 + �3 +
(��5)(3 + �2)

��5 + 3 + �2

= 6�537 /19�36� Ω

The total current in the network is

I� =
36 /0�

6�537 /19�36�

= 5�507 /�19�36� A

Using the principle of current division, we find that

I� =
I� (��5)

��5 + 3 + �2

= 6�49 /�64�36� A

Verification of reciprocity theorem :
The circuit is redrawn by changing the positions of excitation and response. This circuit is shown
in Fig. 3.128.

Figure 3.128

Total impedance of the circuit shown in
Fig. 3.128 is

Z�

� = (3 + �2) + (2 + �3) �� (��5)
= (3 + �2) +

(2 + �3) (��5)
2 + �3� �5

= 9�804 /19�36� Ω

The total current in the circuit is

I�� =
36 /0�

% �

�

= 3�672 /�19�36� A

Using the principle of current division,

I� =
I�� (��5)

��5 + 2 + �3
= 6�49 /�64�36� A

It is found that I� = I�, thus verifying the reciprocity theorem.

EXAMPLE 3.51
Refer the circuit shown in Fig. 3.129. Find current through the ammeter, and hence verify reci-
procity theorem.
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Figure 3.129

SOLUTION

Figure 3.130

To find the current through the ammeter :
By inspection the loop equations for the circuit in Fig. 3.130 can
be written in the matrix form as�

� 16 �1 �10
�1 26 �20
�10 �20 30

�
�
�
� �1
�2
�3

�
� =

�
� 0

0
50

�
�

Using Cramer’s rule, we get

�1 = 4�6 A

�2 = 5�4 A

Hence current through the ammeter = �2��1 = 5�4�4�6 = 0�8A.

Verification of reciprocity theorem:
The circuit is redrawn by interchanging the positions of
excitation and response as shown in Fig. 3.131.
By inspection the loop equations for the circuit can be
written in matrix form as�

� 15 0 �10
0 25 �20
�10 �20 31

�
�
�
� � �1
� �2
� �3

�
� =

�
� �50

50
0

�
�

Using Cramer’s rule we get

� �3 = 0�8 A
Figure 3.131
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Hence, current through the Ammeter = 0.8 A.
It is found from both the cases that the response is same. Hence the reciprocity theorem is

verified.

EXAMPLE 3.52
Find current through 5 ohm resistor shown in Fig. 3.132 and hence verify reciprocity theorem.

Figure 3.132

SOLUTION

By inspection, we can write�
� 12 0 �2

0 2 + �10 �2
�2 �2 9

�
�
�
� I1

I2
I3

�
� =

�
� �20

20
0

�
�

Using Cramer’s rule, we get

I3 = 0�5376 /�126�25� A

Hence, current through 5 ohm resistor = 0�5376 /�126�25� A
Verification of reciprocity theorem:
The original circuit is redrawn by interchanging the excitation and response as shown in Fig.
3.133.

Figure 3.133
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Putting the three equations in matrix form, we get�
� 12 0 �2

0 2 + �10 �2
�2 �2 9

�
�
�
��

I�1
I�2
I�3

�
�� =

�
� 0

0
20

�
�

Using Cramer’s rule, we get

I�1 = 0�3876 /�2�35 A

I�2 = 0�456 /�78�9� A

Hence� I�2 � I�1 = �0�3179� �0�4335

= 0�5376 /�126�25� A

The response in both cases remains the same. Thus verifying reciprocity theorem.

3.8 Millman’s theorem

It is possible to combine number of voltage sources or current sources into a single equiva-
lent voltage or current source using Millman’s theorem. Hence, this theorem is quite useful in
calculating the total current supplied to the load in a generating station by a number of generators
connected in parallel across a busbar.

Millman’s theorem states that if n number of generators having generated emfsE1, E2� � � �E�

and internal impedances Z1�Z2� � � �Z� are connected in parallel, then the emfs and impedances

can be combined to give a single equivalent emf of E with an internal impedance of equivalent

value Z.

where E =
E1Y1 +E2Y2 + � � � +E�Y�

Y1 +Y2 + � � � +Y�

and Z =
1

Y1 +Y2 + � � � +Y�

where Y1�Y2 � � �Y� are the admittances corresponding to the internal impedances Z1�Z2 � � �Z�
and are given by

Y1 =
1

Z1

Y2 =
1

Z2

...

Y� =
1

Z�

Fig. 3.134 shows a number of generators having emfs E1�E2 � � �E� connected in parallel
across the terminals � and 	. Also, Z1�Z2 � � �Z� are the respective internal impedances of the
generators.
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Figure 3.134

The Thevenin equivalent circuit of Fig. 3.134 using Millman’s theorem is shown in Fig. 3.135.
The nodal equation at � gives

Figure 3.135

E1 �E

Z1
+

E2 �E

Z2
+ � � � + E� �E

Z�
= 0

�
�
E1

Z1
+

E2

Z2
+ � � � + E�

Z�

�
= E

�
1

Z1
+

1

Z2
+ � � � + 1

Z�

�

� E1Y1 +E2Y2 + � � � +E�Y� = E

�
1

Z

�

where Z = Equivalent internal impedance.

or [E1Y1 + E2Y2 + � � � +E�Y�] = EY

� E =
E1Y1 +E2Y2 + � � � +E�Y�

Y
where Y =Y1 +Y2 + � � � +Y�

and Z =
1

Y
=

1

Y1 +Y2 + � � � +Y�

EXAMPLE 3.53
Refer the circuit shown in Fig. 3.136. Find the current through 10 Ω resistor using Millman’s
theorem.

Figure 3.136
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SOLUTION

Using Millman’s theorem, the circuit shown in Fig. 3.136 is replaced by its Thevenin equivalent
circuit across the terminals �& as shown in Fig. 3.137.

Figure 3.137

E =
E1Y1 +E2Y2 �E3Y3

Y1 +Y2 +Y3

=

22

�
1

5

�
+ 48

�
1

12

�
� 12

�
1

4

�
1

5
+

1

12
+

1

4

= 10�13 Volts

� =
1

Y1 +Y2 +Y3

=
1

0�2 + 0�083 + 0�25

= 1�88 Ω

Hence� �� =
'

�+ 10
= 0�853 A

EXAMPLE 3.54
Find the current through (10� �3)Ω using Millman’s theorem. Refer Fig. 3.138.

Figure 3.138

SOLUTION

The circuit shown in Fig. 3.138 is replaced by its Thevenin equivalent circuit as seen from the
terminals, 
 and � using Millman’s theorem. Fig. 3.139 shows the Thevenin equivalent circuit
along with Z� = 10� �3 Ω�
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Figure 3.139

E =
E1Y1 +E2Y2 �E3Y3

Y1 +Y2 +Y3

=

100 /0�
�
1

5

�
+ 90 /45�

�
1

10

�
+ 80 /30�

�
1

20

�
1

5
+

1

10
+

1

20

= 88�49 /15�66� V

Z = � =
1

Y1 +Y2 +Y3
=

1
1
5 + 1

10 + 1
20

= 2�86 Ω

I =
E

Z+ Z�
=

88�49 /15�66

2�86 + 10� �3
= 6�7 /28�79� A

Alternately,

E =
E1Y1 +E2Y2 +E3Y3 +E4Y4

Y1 +Y2 +Y3 +Y4

=
100� 5�1 + 90

�
45� � 10�1 + 80

�
30� � 20�1

5�1 + 10�1 + 20�1 + (10� �3)�1

= 70 /12�V

Therefore� � =
70 /12�

10� �3

= 6�7 /28�8�A

EXAMPLE 3.55
Refer the circuit shown in Fig. 3.140. Use Millman’s theorem to find the current through (5+�5) Ω
impedance.
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Figure 3.140
SOLUTION

The original circuit is redrawn after performing source transformation of 5 A in parallel with 4 Ω
resistor into an equivalent voltage source and is shown in Fig. 3.141.

Figure 3.141

Treating the branch 5 + �5Ω as a branch with E
 = 0� ,

E�� =
E1Y1 +E2Y2 +E3Y3 +E4Y4

Y1 +Y2 +Y3 +Y4

=
4� 2�1 + 8� 3�1 + 20� 4�1

2�1 + 3�1 + 4�1 + (5� �5)�1

= 8�14 /4�83�V

Therefore current in (5 + �5)Ω is

I =
8�14 /4�83�

5 + �5
= 1�15 /�40�2�A

Alternately
E�� with (5 + �5) open

E�� =
E1Y1 +E2Y2 +E3Y3

Y1 +Y2 +Y3

=
4� 2�1 + 8� 3�1 + 20� 4�1

2�1 + 3�1 + 4�1

= 8�9231V
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Equivalent resistance � = (2�1 + 3�1 + 4�1)�1 = 0�9231Ω
Therefore current in (5 + �5)Ω is

� =
8�9231

0�9231 + 5 + �5
= 1�15 /�40�2� A

EXAMPLE 3.56
Find the current through 2 Ω resistor using Millman’s theorem. Refer the circuit shown
in Fig. 3.142.

Figure 3.142

SOLUTION

The Thevenin equivalent circuit using Millman’s theorem for the given problem is as shown in
Fig. 3.142(a).

where E =
E1Y1 +E2Y2

Y1 +Y2

=

10 /10�
�

1

3 + �4

�
+ 25 /90�

�
1

5

�
1

3 + �4
+

1

5

= 10�06 /97�12� V

Z =
1

Y1 +Y2
=

1
1

3 + �4
+

1

5

= 2�8 /26�56� Ω

Hence� I� =
E

Z+ 2
=

10�06 /97�12�

2�8 /26�56� + 2

= 2�15 /81�63� A
Figure 3.142(a)
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Reinforcement problems

R.P 3.1

Find the current in 2 Ω resistor connected between 
 and � by using superposition theorem.

Figure R.P. 3.1

SOLUTION

Fig. R.P. 3.1(a), shows the circuit with 2V-source acting alone (4V-source is shorted).
Resistance as viewed from 2V-source is 2 +�1 Ω,

where �1 =

�
3� 2

5
+ 1

����� 12
=

(1�2 + 1)� 12

14�2
= 1�8592 Ω

Hence� I � =
2

2 + 1�8592
= 0�5182 A

Then� I� = I� � 12

12 + 1 + 1�2
= 0�438 A

∴ I1 = 0�438� 3

5
= 0�2628 A Figure R.P. 3.1(a)

With 4V-source acting alone, the circuit is as shown in Fig. R.P. 3.1(b).

Figure R.P.3.1(b)
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The resistance as seen by 4V-source is 3 +�2 where

�2 =

�
2� 12

14
+ 1

����� 2
=

2�7143� 2

4�7143
= 1�1551 Ω

Hence� I� =
4

3 + 1�1551
= 0�9635 A

Thus� I2 =
I� � 2�7143

4�7143
= 0�555 A

Finally, applying the principle of superposition,

we get, I�� = I1 + I2

= 0�2628 + 0�555

= 0�818 A

R.P 3.2

For the network shown in Fig. R.P. 3.2, apply superposition theorem and find the current I.

Figure R.P. 3.2

SOLUTION

Open the 5A-current source and retain the voltage source. The resulting network is as shown in
Fig. R.P. 3.2(a).

Figure R.P. 3.2(a)
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The impedance as seen from the voltage source is

Z = (4� �2) +
(8 + �10) (��2)

8 + �8
= 6�01 /�45� Ω

Hence� I� =
�20

Z
= 3�328 /135� A

Next, short the voltage source and retain the current source. The resulting network is as shown
in Fig. R.P. 3.2 (b).
Here, I3 = 5A. Applying KVL for mesh 1 and mesh 2, we
get

8I1 + (I1 � 5) �10 + (I1 � I2) (��2) = 0

and (I2 � I1) (��2) + (I2 � 5) (��2) + 4I2 = 0

Simplifying, we get

(8 + �8)I1 + �2I2 = �50

and �2I1 + (4� �4)I2 = ��10

Solving, we get

I� = I2 =

���� 8 + �8 �50
�2 ��10

�������� 8 + �8 �2
�2 4� �4

����
= 2�897 /�23�96� A

Since, I� and I� are flowing in opposite directions, we
have

I = I� � I� = 6�1121 /144�78� A

Figure R.P. 3.2(b)

R.P 3.3

Apply superposition theorem and find the voltage across 1 Ω resistor. Refer the circuit shown in
Fig. R.P. 3.3. Take �1(�) = 5 cos (�+ 10�) and �2(�) = 3 sin 2� A.

Figure R.P. 3.3
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SOLUTION

To begin with let us assume �1(�) alone is acting. Accordingly, short 10V - source and open �2(�).
The resulting phasor network is shown in Fig. R.P. 3.3(a).

 = 1rad(sec

5 cos (�+ 10�)� 5 /10� V

�1 = 1H� �  �1 = �1 Ω

�1 = 1F� 1

�  �1
= ��1 Ω

�2 =
1

2
H� �  �2 = �

1

2
Ω

�2 =
1

2
F� 1

�  �2
= ��2 Ω

Figure R.P. 3.3(a)

∴ V� = 5/10� V

� ��(�) = 5 cos [�+ 10�]

Let us next assume that �2(�) alone is acting. The resulting network is shown
in Fig. R.P. 3.3(b).

 = 2 rad(sec

3 sin 2�� 3 /0� A

�1 = 1F� 1

�  �1
= �� 1

2
Ω

�1 = 1H� �  �1 = �2 Ω

�2 =
1

2
F� 1

�  �2
= ��1 Ω

�2 =
1

2
H� �  �2 = �1 Ω

Figure R.P. 3.3(b)

V� = 3/0� � �1�5

1 + �1�5
= 2�5 /33�7� A

� ��(�) = 2�5 sin [2�+ 33�7�] A

Finally with 10V-source acting alone, the network is as shown in Fig. R.P. 3.3(c). Since
 = 0, inductors are shorted and capacitors are opened.
Hence, V	 = 10 V
Applying principle of superposition, we
get.

�2(�) = ��(�) = ��(�) +V	

= 5 cos (�+ 10�) + 2�5 sin (2�+ 33�7�) + 10Volts

Figure R.P. 3.3(c)
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R.P 3.4

Calculate the current through the galvanometer for the Kelvin double bridge shown in Fig. R.P.
3.4. Use Thevenin’s theorem. Take the resistance of the galvanometer as 30 Ω.

Figure R.P. 3.4

SOLUTION

With ) being open, the resulting network is as shown in Fig. R.P. 3.4(a).

Figure 3.4(a)

�� = �1 � 100 =
10

450
� 100 =

20

9
V

�2 =
10

1�5 +
45� 5

50

= 1�66� �� =
�2 � 5

45 + 5
= 0�1�2

Hence� �� = �2 � 0�5 + �� � 10

= 2�5 V

Thus� ��� = �� = �� � �� =
20

9
� 2�5 =

�5
18

Volts
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To find��, short circuit the voltage source. The resulting network is as shown in Fig. R.P. 3.4(b).

Figure R.P. 3.4 (b)

Transforming the Δ between �, ' and * into an equivalent + , we get

�� =
35� 10

50
= 7 Ω� �� =

35� 5

50
= 3�5 Ω� �� =

5� 10

50
= 1 Ω

The reduced network after transformation is as shown in Fig. R.P. 3.4(c).

Figure R.P. 3.4(c)

Hence� ��� = �� =
350� 100

450
+

4�5� 1�5

6
+ 7

= 85�903 Ω

The Thevenin’s equivalent circuit as seen from 


and � with 30 Ω connected between 
 and � is
as shown in Fig. R.P. 3.4(d).

�� =
� 5

18
85�903 + 30

= �2�4mA

Negative sign implies that the current flows from
� to 
.

Figure R.P. 3.4(d)

R.P 3.5

Find �
 and � so that the networks ,1 and ,2 shown in Fig. R.P. 3.5 are equivalent.
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Figure R.P. 3.5
SOLUTION

Transforming the current source in ,1 into an equivalent voltage source, we get ,3 as shown in
Fig. R.P. 3.5(a).

From ,3, we can write, � � �� = ��� (3.28)

From ,2 we can write, � = �10��
Also from ,2, � � 3 = �2��

� � � 3 = �2
���
10

�

� � � 3 =
�

5

� � � �

5
= 3 (3.29)

Figure R.P. 3.5(a)

For equivalence of ,1 and ,2, it is requirred that equations
(3.28) and (3.29) must be same. Comparing these equations, we
get

�� =
�

5
and ��� = 3

� = 0�2 Ω and �� =
3

0�2
= 15A

R.P 3.6

Obtain the Norton’s equivalent of the network shown in Fig. R.P. 3.6.

Figure R.P. 3.6
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SOLUTION

Terminals � and  are shorted. This results in a network as shown in Fig. R.P. 3.6(a)

Figure R.P. 3.6(a)

The mesh equations are

(i) 9�1 + 0�2 � 6�3 = 30 (3.30)

(ii) 0�1 + 25�2 + 15�3 = 30 (3.31)

(iii) � 6�1 + 15�2 + 23�3 = 4�� = 4 (10�2)

� � 6�1 � 25�2 + 23�3 = 0 (3.32)

Solving equations (3.30), (3.31) and (3.32), we get

� = �
	 = �3 = 1�4706A

With terminals � open, �3 = 0. The corresponding equations are

9�1 = 30 and 25�2 = 50

Hence� �1 =
30

9
A and �2 =

30

25
A

Then� �� = 10�2 = 10� 30

25
= 12 V

Hence� �� = ��	 = 15�2 � 6�1 � 4��

= �50 V
Thus� �� =

��	
�
	

=
�50

1�4706
= �34 Ω

Hence, Norton’s equivalent circuit is as shown in Fig. R.P. 3.6(b).

Figure R.P. 3.6(b)
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R.P 3.7

For the network shown in Fig. R.P. 3.7, find the Thevenin’s equivalent to show that

�� =
�1
2

(1 + �+ � �)

and %� =
3� 

2

Figure R.P. 3.7

SOLUTION

With �	 open, �1 =
�1 � ��1

2
Hence,

��	 = �� = ��1 + �1 + �1

= ��1 +
�1 � ��1

2
+ 

�
�1 � ��1

2

�

=
�1
2

[1 + �+ � �]

With �	 shorted, the resulting network is
as shown in Fig. R.P. 3.7(a). Figure R.P. 3.7(a)

Applying KVL equations, we get

(i) �1 + (�1 � �2) = �1 � ��1

� 2�1 � �2 = �1 � ��1 (3.33)

(ii) (�2 � �1) + �2 = ��1 + �1

� � (1 + ) �1 + 2�2 = ��1 (3.34)

Solving equations (3.33) and (3.34), we get

�
	 = �2 =
�1 (1 + �+ � �)

3� 
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Hence� %� =
��	
�
	

=
�1
2

(1 + �+ � �)

�1 (1 + �+ � �)
(3� )

=
3� 

2

R.P 3.8

Use Norton’s theorem to determine � in the network shown in Fig. R.P. 3.8. Resistance Values
are in ohms.

Figure R.P. 3.8

SOLUTION

Let ��� = � and ��� = 	. Then by applying KCL at various junctions, the branch currents are
marked as shown in Fig. R.P. 3.8(a). �
	 = 125� � = ��� on shorting 
 and �.

Applying KVL to the loop 
��*'
, we get

0�04�+ 0�01	 + 0�02 (	 � 20) + 0�03 (�� 105) = 0

� 0�07�+ 0�03	 = 3�55 (3.35)

Applying KVL to the loop '-�'* , we get

(�� 	 � 30) 0�03 + (�� 	 � 55) 0�02� (	 � 20) 0�02� 0�01	 = 0

� 0�05�� 0�08	 = 1�6 (3.36)
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Figure R.P. 3.8(a)

Solving equations (3.35) and (3.36), we get

� = 46�76 A

Hence� �
	 = � = 120� �

= 78�24 A

The circuit to calculate �� is as shown in Fig. R.P. 3.8(b). All injected currents have been
opened.

�� = 0�03 + 0�04 +
0�03� 0�05

0�08
= 0�08875 Ω

Figure R.P. 3.8(b) Figure R.P. 3.8(c)
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The Norton’s equivalent network is as shown in Fig. R.P. 3.8(c).

� = 78�24� 0�08875

0�08875 + 0�04
= 53�9A

R.P 3.9

For the circuit shown in Fig. R.P. 3.9, find � such that the maximum power delivered to the load
is 3 mW.

Figure R.P. 3.9

SOLUTION

For a resistive network, the maximum power delivered to the load is

Figure R.P. 3.9(a)

�max =
� 2
�

4��

The network with �� removed is as shown in Fig.
R.P. 3.9(a).

Let the opent circuit voltage between the termi-
nals � and  be ��.

Then, applying KCL at node �, we get

�� � 1

�
+
�� � 2

�
+
�� � 3

�
= 0

Simplifying we get �� = 2 Volts

With all voltage sources shorted, the resistance, �� as viewed from the terminals, � and  is
found as follows:

1

��

=
1

�
+

1

�
+

1

�
=

3

�

� �� =
�

3
Ω
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Hence, Pmax =
22

4× R
3

=
3

R
= 3× 10−3

⇒ R = 1 kΩ

R.P 3.10

Refer Fig. R.P. 3.10, find X1 and X2 interms of R1 and R2 to give maximum power dissipation
in R2.

Figure R.P. 3.10

SOLUTION

The circuit for finding Zt is as shown in Figure R.P. 3.10(a).

Zt =
R1 (jX1)

R1 + jX1

=
R1X

2
1 + jR2

1X1

R2
1 +X2

1

Figure R.P. 3.10(a)
For maximum power transfer,

ZL = Z∗
t

⇒ R2 + jX2 =
R1X

2
1

R2
1 +X2

1

− j
R2

1X1

R2
1 +X2

1

Hence, R2 =
R1X

2
1

R2
1 +X2

1

⇒ X1 = ±R1

√
R2

R1 −R2
(3.37)

X2 = − R2
1X1

R2
1 +X2

1

(3.38)

Substituting equation (3.37) in equation (3.38) and simplifying, we get

X2 =
√
R2 (R1 −R2)
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Exercise Problems

E.P 3.1

Find �� for the circuit shown in Fig. E.P. 3.1 by using principle of superposition.

Figure E.P. 3.1

Ans : i� = �

1

4
A

E.P 3.2

Find the current through branch �& using superposition theorem.

Figure E.P. 3.2

Ans : 1.0625 A

E.P 3.3

Find the current through 15 ohm resistor using superposition theorem.

Figure E.P. 3.3

Ans : 0.3826 A
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E.P 3.4

Find the current through 3 + �4 Ω using superposition theorem.

Figure E.P. 3.4

Ans : 8.3 /85.3� A

E.P 3.5

Find the current through I� using superposition theorem.

Figure E.P. 3.5

Ans : 3.07 /�163.12� A

E.P 3.6

Determine the current through 1 Ω resistor using superposition theorem.

Figure E.P. 3.6

Ans : 0.406 A
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E.P 3.7

Obtain the Thevenin equivalent circuit at terminals ��  of the network shown in Fig. E.P. 3.7.

Figure E.P. 3.7

Ans : V� = 6.29 V,R� = 9.43 Ω

E.P 3.8

Find the Thevenin equivalent circuit at terminals �� 	 of the circuit shown in Fig. E.P. 3.8.

Figure E.P. 3.8

Ans : V� = 0.192/�43.4� V, Z� = 88.7/11.55� Ω

E.P 3.9

Find the Thevenin equivalent of the network shown in Fig. E.P. 3.9.

Figure E.P. 3.9

Ans : V� = 17.14 volts,R� = 4 Ω
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E.P 3.10

Find the Thevenin equivalent circuit across �� . Refer Fig. E.P. 3.10.

Figure E.P. 3.10

Ans : V� = �30 V,R� = 10 kΩ

E.P 3.11

Find the Thevenin equivalent circuit across ��  for the network shown in Fig. E.P. 3.11.

Figure E.P. 3.11

Ans : Verify your result with other methods.

E.P 3.12

Find the current through 20 ohm resistor using Norton equivalent.

Figure E.P. 3.12

Ans : I� = 4.36 A, R� = R� = 8.8 Ω, I� = 1.33 A
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E.P 3.13

Find the current in 10 ohm resistor using Norton’s theorem.

Figure E.P. 3.13

Ans : I� = �4 A, R� = R� =
100

7
Ω, I� = �0.5 A

E.P 3.14

Find the Norton equivalent circuit between the terminals �� for the network shown in Fig. E.P. 3.14.

Figure E.P. 3.14

Ans : I� = 4.98310/�5.71� A, Z� = Z� = 3.6/23.1� Ω

E.P 3.15

Determine the Norton equivalent circuit across the terminals � � & for the network shown in
Fig. E.P. 3.15.

Figure E.P. 3.15

Ans : I� = 5 A, R� = R� = 6 Ω
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E.P 3.16

Find the Norton equivalent of the network shown in Fig. E.P. 3.16.

Figure E.P. 3.16

Ans : I� = 8.87 A, R� = R� = 43.89 Ω

E.P 3.17

Determine the value of �� for maximum power transfer and also find the maximum power trans-
ferred.

Figure E.P. 3.17

Ans : R� = 1.92 Ω, Pmax = 4.67W

E.P 3.18

Calculate the value of %� for maximum power transfer and also calculate the maximum power.

Figure E.P. 3.18

Ans : Z� = (7.97 + j2.16)Ω, Pmax = 0.36W
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E.P 3.19

Determine the value of �� for maximum power transfer and also calculate the value of maximum
power.

Figure E.P. 3.19

Ans : R� = 5.44 Ω, Pmax = 2.94W

E.P 3.20

Determine the value of %� for maximum power transfer. What is the value of maximum power?

Figure E.P. 3.20

Ans : Z� = 4.23 + j1.15 Ω, Pmax = 5.68Watts

E.P 3.21

Obtain the Norton equivalent across �� 	.

Figure E.P. 3.21

Ans : I� = I�� = 7.35A, R� = R� = 1.52 Ω

E.P 3.22

Find the Norton equivalent circuit at terminals ��  of the network shown in Fig. E.P. 3.22.
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Figure E.P. 3.22

Ans : I� = 1.05/251.6� A, Z� = Z� = 10.6/45� Ω

E.P 3.23

Find the Norton equivalent across the terminals ! � + of the network shown in Fig. E.P. 3.23.

Figure E.P. 3.23

Ans : I� = 7A, Z� = 8.19/�55� Ω

E.P 3.24

Determine the current through 10 ohm resistor using Norton’s theorem.

Figure E.P. 3.24

Ans : 0.15A
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E.P 3.25

Determine the current � using Norton’s theorem.

Figure E.P. 3.25

Ans : Verify your result with other methods.

E.P 3.26

Find V� in the circuit shown in Fig. E.P. 3.26 and hence verify reciprocity theorem.

Figure E.P. 3.26

Ans : V� = 9.28/21.81� V

E.P 3.27

Find �� in the circuit shown in Fig. E.P. 3.27 and hence verify reciprocity theorem.

Figure E.P. 3.27

Ans : V� = 10.23 Volts
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E.P 3.28

Find the current �� in the bridge circuit and hence verify reciprocity theorem.

Figure E.P. 3.28

Ans : i� = 0.031 A

E.P 3.29

Find the current through 4 ohm resistor using Millman’s theorem.

Figure E.P. 3.29

Ans : I = 2.05 A

E.P 3.30

Find the current through the impedance of (10 + �10) Ω using Millman’s theorem.

Figure E.P. 3.30

Ans : 3.384/12.6� A
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E.P 3.31

Using Millman’s theorem, find the current flowing through the impedance of (4 + �3) Ω.

Figure E.P. 3.31

Ans : 3.64/15.23� A



4.1 Introduction

There are many reasons for studying initial and final conditions. The most important reason is that
the initial and final conditions evaluate the arbitrary constants that appear in the general solution
of a differential equation.

In this chapter, we concentrate on finding the change in selected variables in a circuit when
a switch is thrown open from closed position or vice versa. The time of throwing the switch is
considered to be � = 0, and we want to determine the value of the variable at � = 0� and at
� = 0+, immediately before and after throwing the switch. Thus a switched circuit is an electrical
circuit with one or more switches that open or close at time � = 0. We are very much interested
in the change in currents and voltages of energy storing elements after the switch is thrown since
these variables along with the sources will dictate the circuit behaviour for � � 0.

Initial conditions in a network depend on the past history of the circuit (before � = 0�) and
structure of the network at � = 0+, (after switching). Past history will show up in the form of
capacitor voltages and inductor currents. The computation of all voltages and currents and their
derivatives at � = 0+ is the main aim of this chapter.

4.2 Initial and final conditions in elements

4.2.1 The inductor

The switch is closed at � = 0. Hence � = 0� corresponds
to the instant when the switch is just open and � = 0+

corresponds to the instant when the switch is just closed.
The expression for current through the

inductor is given by

� =
1

�

��
��

���
Figure 4.1 Circuit for explaining

switching action of an inductor
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� � =
1

�

0��
��

��� +
1

�

��
0�

���

� �(�) = �(0�) +
1

�

��
0�

���

Putting � = 0+ on both sides, we get

�(0+) = �(0�) +
1

�

0+�
0�

���

� �(0+) = �(0�)

The above equation means that the current in an inductor cannot change instantaneously.
Consequently, if �(0�) = 0, we get �(0+) = 0. This means that at � = 0+, inductor will act
as an open circuit, irrespective of the voltage across the terminals. If �(0�) = ��, then �(0+) = ��.
In this case at � = 0+, the inductor can be thought of as a current source of �� A. The equivalent
circuits of an inductor at � = 0+ is shown in Fig. 4.2.

������

Figure 4.2 The initial-condition equivalent circuits of an inductor

The final-condition equivalent circuit of an inductor is derived from the basic relationship

� = �
��

��

Under steady condition,
��

��
= 0. This means, � = 0 and hence � acts as short at � =� (final

or steady state). The final-condition equivalent circuits of an inductor is shown in Fig.4.3.

�����

��

��

Figure 4.3 The final-condition equivalent circuit of an inductor



Initial Conditions in Network � 279

4.2.2 The capacitor

The switch is closed at � = 0. Hence, � = 0�

corresponds to the instant when the switch is
just open and � = 0+ corresponds to the instant
when the switch is just closed. The expression
for voltage across the capacitor is given by

� =
1

	

��
��

��� Figure 4.4 Circuit for explaining

switching action of a Capacitor

� �(�) =
1

	

0��
��

��� +
1

	

��
0�

���

� �(�) = �(0�) +
1

	

��
0�

���

Evaluating the expression at � = 0+, we get

�(0+) = �(0�) +
1

	

0+�
0�

��� � �(0+) = �(0�)

Thus the voltage across a capacitor cannot change instantaneously.

If �(0�) = 0, then �(0+) = 0. This means that at � = 0+, capacitor 	 acts as short circuit.
Conversely, if �(0�) =


0
	

then �(0+) =

0
	

. These conclusions are summarized in Fig. 4.5.

Figure 4.5 Initial-condition equivalent circuits of a capacitor

The final–condition equivalent network is derived from the basic relationship

� = 	
��

��

Under steady state condition,
��

��
= 0. This is, at � = �, � = 0. This means that � = �

or in steady state, capacitor 	 acts as an open circuit. The final condition equivalent circuits of a
capacitor is shown in Fig. 4.6.
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Figure 4.6 Final-condition equivalent circuits of a capacitor

4.2.3 The resistor

The cause–effect relation for an ideal resistor is given by � = ��. From this equation, we find that
the current through a resistor will change instantaneously if the voltage changes instantaneously.
Similarly, voltage will change instantaneously if current changes instantaneously.

4.3 Procedure for evaluating initial conditions
There is no unique procedure that must be followed in solving for initial conditions. We usually
solve for initial values of currents and voltages and then solve for the derivatives. For finding
initial values of currents and voltages, an equivalent network of the original network at � = 0+ is
constructed according to the following rules:

(1) Replace all inductors with open circuit or with current sources having the value of current
flowing at � = 0+.

(2) Replace all capacitors with short circuits or with a voltage source of value �� =

0
	

if there
is an initial charge.

(3) Resistors are left in the network without any changes.

EXAMPLE 4.1
Refer the circuit shown in Fig. 4.7(a). Find �1(0

+) and ��(0
+). The circuit is in steady state

for � � 0.

� ����� �� ��

�

Figure 4.7(a)
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SOLUTION

The symbol for the switch implies
that it is open at � = 0� and then
closed at � = 0+. The circuit is
in steady state with the switch open.
This means that at � = 0�, induc-
tor � is short. Fig.4.7(b) shows the
original circuit at � = 0�.
Using the current division principle,

��(0
�) =

2� 1

1 + 1
= 1A

�

�� ��

�

Figure 4.7(b)

Since the current in an inductor cannot change instantaneously, we have

��(0
+) = ��(0

�) = 1A

At � = 0�, �1(0�) = 2 � 1 = 1A. Please note that the current in a resistor can change
instantaneously. Since at � = 0+, the switch is just closed, the voltage across �1 will be equal to
zero because of the switch being short circuited and hence,

�1(0
+) = 0A

Thus, the current in the resistor changes abruptly form 1A to 0A.

EXAMPLE 4.2
Refer the circuit shown in Fig. 4.8. Find ��(0

+). Assume that the switch was in closed state for
a long time.

Figure 4.8

SOLUTION

The symbol for the switch implies that it is closed at � = 0� and then opens at � = 0+. Since the
circuit is in steady state with the switch closed, the capacitor is represented as an open circuit at
� = 0�. The equivalent circuit at � = 0� is as shown in Fig. 4.9.
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��(0
�) = �(0�)�2

Using the principle of voltage divider,

��(0
�) =

�
�1 +�2

�2 =
5� 1

1 + 1
= 2�5 V

Since the voltage across a capacitor cannot
change instaneously, we have

��(0
+) = ��(0

�) = 2�5V

Figure 4.9

That is, when the switch is opened at � = 0, and if the source is removed from the circuit, still
��(0

+) remains at 2.5 V.

EXAMPLE 4.3
Refer the circuit shown in Fig 4.10. Find ��(0

+) and ��(0
+). The circuit is in steady state with

the switch in closed condition.

Figure 4.10

SOLUTION

The symbol for the switch implies, it is closed
at � = 0� and then opens at � = 0+. In order
to find ��(0

�) and ��(0
�) we replace the ca-

pacitor by an open circuit and the inductor by
a short circuit, as shown in Fig.4.11, because
in the steady state � acts as a short circuit and
	 as an open circuit.

��(0
�) =

5

2 + 3
= 1 A

Figure 4.11

Using the voltage divider principle, we note that

��(0
�) =

5� 3

3 + 2
= 3 V

Then we note that:
��(0

+) = ��(0
�) = 3 V

��(0
+) = ��(0

�) = 2 A
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EXAMPLE 4.4
In the given network, � is closed at � = 0 with
zero current in the inductor. Find the values

of ��
��

��
,
�2�

��2
at � = 0+ if � = 8Ω and � = 0�2H.

Refer the Fig. 4.12(a).

SOLUTION

The symbol for the switch implies that it is open
at � = 0� and then closes at � = 0+. Since the
current � through the inductor at � = 0� is zero, it
implies that �(0+) = �(0�) = 0.

To find
��(0+)

��
and

�2�(0+)

��2
:

Applying KVL clockwise to the circuit shown in
Fig. 4.12(b), we get

Figure 4.12(a)

�
�

������

�����	
�

Figure 4.12(b)

��+ �
��

��
= 12

� 8�+ 0�2
��

��
= 12 (4.1)

At � = 0+, the equation (4.1) becomes

8�(0+) + 0�2
��(0+)

��
= 12

� 8� 0 + 0�2
��(0+)

��
= 12

�
��(0+)

��
=

12

0�2
= 60 A�sec

Differentiating equation (4.1) with respect to �, we get

8
��

��
+ 0�2

�2�

��2
= 0

At � = 0+, the above equation becomes

8
��(0+)

��
+ 0�2

�2�(0+)

��2
= 0

� 8� 60 + 0�2
�2�(0+)

��2
= 0

Hence
�2�(0+)

��2
= – 2400 A�sec2
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EXAMPLE 4.5

In the network shown in Fig. 4.13, the switch is closed at � = 0. Determine ��
��

��
,
�2�

��2
at � = 0+.

Figure 4.13

SOLUTION

The symbol for the switch implies that it is open at � = 0� and then closes at � = 0+. Since there
is no current through the inductor at � = 0�, it implies that �(0+) = �(0�) = 0.

������� ������

�������

Figure 4.14

Writing KVL clockwise for the circuit shown in Fig. 4.14, we get

��+ �
��

��
+

1

	

��
0

�(� )�� = 10 (4.2)

� ��+ �
��

��
+ ��(�) = 10 (4.2a)

Putting � = 0+ in equation (4.2a), we get

��
�
0+
�
+ �

��
�
0+
�

��
+ ��

�
0+
�
= 10

� �� 0 + �
��
�
0+
�

��
+ 0 = 10

�
��
�
0+
�

��
=

10

�
= 10 A/sec

Differentiating equation (4.2) with respect to �, we get

�
��

��
+ �

�2�

��2
+

�(�)

	
= 0
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At � = 0+, the above equation becomes

�
��
�
0+
�

��
+ �

�2�
�
0+
�

��2
+

�
�
0+
�

	
= 0

� �� 10 + �
�2�

�
0+
�

��2
+

0

	
= 0

� 100 +
�2�

�
0+
�

��2
= 0

Hence at � = 0+�
�2�

�
0+
�

��2
= �100 A/sec2

EXAMPLE 4.6
Refer the circuit shown in Fig. 4.15. The switch
� is changed from position 1 to position 2 at
� = 0. Steady-state condition having been

reached at position 1. Find the values of �,
��

��
,

and
�2�

��2
at � = 0+.

Figure 4.15SOLUTION

The symbol for switch � implies that it is in position 1 at � = 0� and in position 2 at � = 0+.
Under steady-state condition, inductor acts as a short circuit. Hence at � = 0�, the circuit diagram
is as shown in Fig. 4.16.

Figure 4.16

�
�
0�
�
=

20

10
= 2A

Since the current through an inductor cannot change
instantaneously, �

�
0+
�
= � (0�) = 2A. Since there is

no initial charge on the capacitor, �� (0�) = 0. Since
the voltage across a capacitor cannot change instanta-
neously, ��

�
0+
�
= �� (0�) = 0. Hence at � = 0+

the circuit diagram is as shown in Fig. 4.17(a).
For � � 0+, the circuit diagram is as shown in Fig. 4.17(b).

Figure 4.17(a) Figure 4.17(b)
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Applying KVL clockwise to the circuit shown in Fig. 4.17(b), we get

��(�) + �
��(�)

��
+

1

	

��
0+

�(� )�� = 0 (4.3)

� ��(�) + �
��(�)

��
+ ��(�) = 0 (4.3a)

At � = 0+ equation (4.3a) becomes

��
�
0+
�
+ �

��
�
0+
�

��
+ ��

�
0+
�
= 0

� �� 2 + �
��
�
0+
�

��
+ 0 = 0

� 20 +
��
�
0+
�

��
= 0

�
��
�
0+
�

��
= �20 A/sec

Differentiating equation (4.3) with respect to �, we get

�
��

��
+ �

�2�

��2
+

�

	
= 0

At � = 0+, we get

�
��
�
0+
�

��
+ �

�2�
�
0+
�

��2
+

�
�
0+
�

	
= 0

� �� (�20) + �
�2�

�
0+
�

��2
+

2

	
= 0

Hence�
�2�

�
0+
�

��2
� �2� 106 A�sec2

EXAMPLE 4.7
In the network shown in Fig. 4.18, the switch is moved from position 1 to position 2 at � = 0. The

steady-state has been reached before switching. Calculate �,
��

��
, and

�2�

��2
at � = 0+.

Figure 4.18



Initial Conditions in Network � 287

Figure 4.18(a)

SOLUTION

The symbol for switch � implies that it is in posi-
tion 1 at � = 0� and in position 2 at � = 0+. Under
steady-state condition, a capacitor acts as an open cir-
cuit. Hence at � = 0�, the circuit diagram is as shown
in Fig. 4.18(a).

We know that the voltage across a capacitor
cannot change instantaneously. This means that
��

�
0+
�
= �� (0�) = 40 V.

At � = 0�, inductor is not energized. This means that � (0�) = 0. Since current in an inductor
cannot change instantaneously, �

�
0+
�
= � (0�) = 0. Hence, the circuit diagram at � = 0+ is as

shown in Fig. 4.18(b).
The circuit diagram for � � 0+ is as shown in Fig.4.18(c).

Figure 4.18(b) Figure 4.18(c)

Applying KVL clockwise, we get

��+ �
��

��
+

1

	

��
0+

�(� )�� = 0 (4.4)

� ��+ �
��

��
+ ��(�) = 0

At � = 0+, we get

��(0+) + �
��(0+)

��
+ ��(0

+) = 0

� 20� 0 + 1
��(0+)

��
+ 40 = 0

�
��(0+)

��
= �40A/ sec

Diferentiating equation (4.4) with respect to �, we get

�
��

��
+ �

�2�

��2
+

�

	
= 0
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Putting � = 0+ in the above equation, we get

�
��(0+)

��
+ �

�2�(0+)

��2
+

�(0+)

	
= 0

� �� (�40) + �
�2�(0+)

��2
+

0

	
= 0

Hence
�2�(0+)

��2
= 800A/ sec2

EXAMPLE 4.8
In the network shown in Fig. 4.19, �1(�) = ��� for � � 0 and is zero for all � � 0. If the capacitor

is initially uncharged, determine the value of
�2�2
��2

and
�3�2
��3

at � = 0+.

Figure 4.19

SOLUTION

Since the capacitor is initially uncharged,
�2(0

+) = 0
Referring to Fig. 4.19(a) and applying KCL
at node �2(�):

�2(�)� �1(�)

�1
+ 	

��2(�)

��
+

�2(�)

�2
= 0

�

�
1

�1
+

1

�2

�
�2(�) + 	

��2(�)

��
=

�1(�)

�1 Figure 4.19(a)

� 0�15�2 + 0�05
��2
��

= 0�1��� (4.5)

Putting � = 0+, we get

0�15�2(0
+) + 0�05

��2(0
+)

��
= 0�1

� 0�15� 0 + 0�05
��2(0

+)

��
= 0�1

�
��2(0

+)

��
=

0�1

0�05
= 2 Volts� sec
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Differentiating equation (4.5) with respect to �, we get

0�15
��2
��

+ 0�05
�2�2
��2

= �0�1��� (4.6)

Putting � = 0+ in equation (4.6), we find that

�2�2(0
+)

��2
=
�0�1� 0�3

0�05
= �8 Volts/ sec2

Again differentiating equation (4.6) with respect to �, we get

0�15
�2�2
��2

+ 0�05
�3�2
��3

= 0�1��� (4.7)

Putting � = 0+ in equation (4.7) and solving for
�3�2
��3

(0+), we find that

�3�2(0
+)

��3
=

0�1 + 1�2

0�05
= 26 Volts/ sec3

EXAMPLE 4.9
Refer the circuit shown in Fig. 4.20. The circuit is in steady state with switch � closed. At � = 0,

the switch is opened. Determine the voltage across the switch, �� and
���
��

at � = 0+.

Figure 4.20
SOLUTION

The switch remains closed at � = 0� and open at � = 0+. Under steady condition, inductor acts
as a short circuit and hence the circuit diagram at � = 0� is as shown in Fig. 4.21(a).

Therefore� ��(0+) = ��(0�)

= 0 V

For � � 0+ the circuit diagram is as shown in Fig. 4.21(b).

Figure 4.21(a) Figure 4.21(b)
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�(�) = 	
���
��

At (�) = 0+, we get

�(0+) = 	
���(0+)

��

Since the current through an inductor cannot change instantaneously, we get

�(0+) = �(0�) = 2A

Hence� 2 = 	
���(0+)

��
���(0+)

��
=

2

	
=

2
1
2

= 4V/ sec

EXAMPLE 4.10

In the given network, the switch � is opened at � = 0. At � = 0+, solve for the values of ��
��

��

and
�2�

��2
if � = 2 A� � = 200 Ω and � = 1 H

Figure 4.22

SOLUTION

The switch is opened at � = 0. This means that at � = 0�, it is closed and at � = 0+, it is open.
Since ��(0�) = 0, we get ��(0+) = 0. The circuit at � = 0+ is as shown in Fig. 4.23(a).

Figure 4.23(a) Figure 4.23(b)

�(0+) = ��

= 2� 200

= 400 Volts
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Refer to the circuit shown in Fig. 4.23(b).
For � � 0+, the KCL at node �(�) gives

� =
�(�)

�
+

1

�

��
0+

�(� )�� (4.8)

Differentiating both sides of equation (4.8) with respect to �, we get

0 =
1

�

��(�)

��
+

1

�
�(�) (4.8a)

At � = 0+, we get
1

�

��(0+)

��
+

1

�
�(0+) = 0

�
1

200

��(0+)

��
+

1

1
� 400 = 0

�
��(0+)

��
= �8� 104 V/ sec

Again differentiating equation (4.8a), we get

1

�

�2�(�)

��2
+

1

�

��(�)

��
= 0

At � = 0+, we get
1

200

�2�(0+)

��2
+

1

1

��(0+)

��
= 0

�
�2�(0+)

��2
= 200� 8� 104

= 16� 106 V/ sec2

EXAMPLE 4.11
In the circuit shown in Fig. 4.24, a steady state is reached with switch � open. At � = 0, the
switch is closed. For element values given, determine the values of ��(0�) and ��(0+).

Figure 4.24
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SOLUTION

At � = 0�, the switch is open and at � = 0+, the switch is closed. Under steady conditions,
inductor � acts as a short circuit. Also the steady state is reached with switch � open. Hence, the
circuit diagram at � = 0� is as shown in Fig.4.25(a).

��(0
�) =

5

30
+

5

10
=

2

3
A

Using the voltage divider principle:

��(0
�) =

5� 20

10 + 20
=

10

3
V

Since the current in an inductor cannot change instantaneously,

��(0
+) = ��(0

�) =
2

3
A�

At � = 0+, the circuit diagram is as shown in Fig. 4.25(b).

Figure 4.25(a) Figure 4.25(b)

Refer the circuit in Fig. 4.25(b).
KCL at node a:

��(0
+)� 5

10
+

��(0
+)

10
+

��(0
+)� ��(0

+)

20
= 0

� ��(0
+)

�
1

10
+

1

10
+

1

20

�
� ��(0

+)

�
1

20

�
=

5

10

KCL at node b:

��(0
+)� ��(0

+)

20
+

��(0
+)� 5

10
+

2

3
= 0

� ���(0
+)

�
1

20

�
+ ��(0

+)

�
1

20
+

1

10

�
=

5

10
�

2

3
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Solving the above two nodal equations, we get,

��(0
+) =

40

21
V

EXAMPLE 4.12

Find ��(0+)� ��(0+)�
���(0

+)

��
and

���(0
+)

��
for the circuit shown in Fig. 4.26.

Assume that switch 1 has been opened and switch 2 has been closed for a long time and
steady–state conditions prevail at � = 0�.

Figure 4.26

Figure 4.27(a)

SOLUTION

At � = 0�, switch 1 is open and
switch 2 is closed, whereas at � = 0+,
switch 1 is closed and switch 2 is
open.

First, let us redraw the circuit at
� = 0� by replacing the inductor
with a short circuit and the capacitor
with an open circuit as shown in Fig.
4.27(a).

From Fig. 4.27(b), we find that
��(0

�) = 0

Figure 4.27(b)
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Applying KVL clockwise to the loop on the
right, we get

���(0
�)� 2 + 1� 0 = 0

� ��(0
�) = �2 V

Hence, at � = 0+ : ��(0
+) = ��(0

�) = 0A

��(0
+) = ��(0

�) = �2V

The circuit diagram for � � 0+ is shown in
Fig. 4.27(c). Figure 4.27(c)

Applying KVL for right–hand mesh, we get

�� � �� + �� = 0

At � = 0+, we get

��(0
+) = ��(0

+)� ��(0
+)

= �2� 0 = �2 V

We know that �� = �
���
��

At � = 0+, we get

���(0
+)

��
=

��(0
+)

�
=
�2

1
= �2A/ sec

Applying KCL at node � ,
�� � 10

2
+ �� + �� = 0

Consequently, at � = 0+

��(0
+) =

10� ��(0
+)

2
� ��(0

+) = 6� 0 = 6 A

Since �� = 	
���
��

We get,
���(0

+)

��
=

��(0
+)

	
=

6
1
2

= 12V/ sec

EXAMPLE 4.13
For the circuit shown in Fig. 4.28, find:

(a) �(0+) and �(0+)

(b)
��(0+)

��
and

��(0+)

��

(c) �(�) and �(�)
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Figure 4.28
SOLUTION

(a) From the symbol of switch, we find that at � = 0�, the switch is closed and � = 0+, it is
open. At � = 0�, the circuit has reached steady state so that the equivalent circuit is as shown in
Fig.4.29(a).

�(0�) =
12

6
= 2A

�(0�) = 12 V

Therefore, we have �(0+) = �(0�)

= 2A

�(0+) = �(0�) = 12V

(b) For � � 0+, we have the equivalent circuit as shown in Fig.4.29(b).

Figure 4.29(a) Figure 4.29(b)

Applying KVL anticlockwise to the mesh on the right, we get

��(�)� �(�) + 10�(�) = 0

Putting � = 0+, we get

��(0
+)� �(0+) + 10�(0+) = 0

� ��(0
+)� 12 + 10� 2 = 0

� ��(0
+) = �8V
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The voltage across the inductor is given by

�� = �
��

��

� ��(0
+) = �

��(0+)

��

�
��(0+)

��
=

1

�
��(0

+)

=
1

10
(�8) = �0.8A/ sec

Similarly, the current through the capacitor is

Figure 4.29(c)

�� = 	
��

��

or
��(0+)

��
=

��(0
+)

	
=
��(0+)

	

=
�2

10� 10�6
= �0.2� 106V/ sec

(c) As � approaches infinity, the switch is open and the circuit
has attained steady state. The equivalent circuit at � = � is
shown in Fig.4.29(c).

�(�) = 0

�(�) = 0

EXAMPLE 4.14
Refer the circuit shown in Fig.4.30. Find the following:

(a) �(0+) and �(0+)

(b)
��(0+)

��
and

��(0+)

��

(c) �(�) and �(�)

Figure 4.30

SOLUTION

From the definition of step function,

�(�) =

�
1� � � 0
0� � � 0
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From Fig.4.31(a), �(�) = 0 at � = 0�.

Similarly� �(��) =

�
1� �� � 0
0� �� � 0

or �(��) =

�
1� � � 0
0� � � 0

From Fig.4.31(b), we find that �(��) = 1, at � = 0�.

������

������

Figure 4.31(a) Figure 4.31(b)

Due to the presence of �(��) and �(�) in the circuit of Fig.4.30, the circuit is an implicit
switching circuit. We use the word implicit since there are no conventional switches in the circuit
of Fig.4.30.

The equivalent circuit at � = 0� is shown in Fig.4.31(c). Please note that at � = 0�, the
independent current source is open because �(�) = 0 at � = 0� and the circuit is in steady state.

Figure 4.31(c)

�(0�) =
40

3 + 5
= 5A

�(0�) = 5�(0�) = 25V

Therefore �(0+) = �(0�) = 5A

�(0+) = �(0�) = 25V

(b) For � � 0+� �(��) = 0. This implies that the independent voltage source is zero and hence
is represented by a short circuit in the circuit shown in Fig.4.31(d).
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Figure 4.31(d)

Applying KVL at node �, we get
4 + � = 	

��

��
+

�

5

At � = 0+, We get
4 + �(0+) = 	

��(0+)

��
+

�(0+)

5

� 4 + 5 = 0�1
��(0+)

��
+

25

5

�
��(0+)

��
= 40V/ sec

Applying KVL to the left–mesh, we get

3�+ 0�25
��

��
+ � = 0

Evaluating at � = 0+, we get

3�(0+) + 0�25
��(0+)

��
+ �(0+) = 0

� 3� 5 + 0�25
��(0+)

��
+ 25 = 0

�
��(0+)

��
=
�40
1
4

= �160A/ sec

(c) As � approaches infinity, again the circuit is in steady state. The equivalent circuit at � =�
is shown in Fig.4.31(e).

Figure 4.31(e)
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Using the principle of current divider, we get

�(�) = �

�
4� 5

3 + 5

�
= �2.5A

�(�) = (�(�) + 4) 5

= (�2�5 + 4)5

= 7.5V

EXAMPLE 4.15
Refer the circuit shown in Fig.4.32. Find the following:

(a) �(0+) and �(0+)

(b)
��(0+)

��
and

��(0+)

��

(c) �(�) and �(�)

Figure 4.32

SOLUTION

Here the function �(�) behaves like a switch. Mathematically,

�(�) =

�
1� � � 0
0� � � 0

The above expression means that the switch represented by �(�) is open for � � 0 and remains
closed for � � 0. Hence, the circuit diagram of Fig.4.32 may be redrawn as shown in Fig.4.33(a).

Figure 4.33(a)

For � � 0, the circuit is not active because switch is in open state, This implies that all the
initial conditions are zero.

That is, ��(0
�) = 0 and ��(0�) = 0

for � � 0+, the equivalent circuit is as shown in Fig.4.33(b).



300 � Network Theory

Figure 4.33(b)

From the circuit diagram of Fig.4.33(b), we find that
� =

��
5

At � = 0+, we get

�(0+) =
��(0

+)

5
=

��(0
�)

5
=

0

5
= 0A

Also � = 15��

Evaluating at � = 0+, we get
�(0+) = 15��(0

+)

= 15��(0
�) = 15� 0 = 0V

(b) The equivalent circuit at � = 0+ is shown in Fig.4.33(c).
We find from Fig.4.33(c) that

��(0
+) = 5A

Figure 4.33(c)

From Fig.4.33(b), we can write
�� = 5�

�
���
��

= 5
��

��

Multiplying both sides by 	, we get

	
���
��

= 5	
��

��
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� �� = 5	
��

��

Putting � = 0+, we get

��(0+)

��
=

1

5	
��(0

+)

=
1

5
�
1
4

� � 5

= 4A/ sec

Also � = 15��

�
��

��
= 15

���
��

�
��

��
= 15

�
1�

���
��

�

�
��

��
= 15��

At � = 0+, we find that

�
��(0+)

��
= 15��(0

+)

From Fig.4.33(b), we find that ��(0+) = 0

Hence�
��(0+)

��
= 15� 0

= 0V/ sec

EXAMPLE 4.16
In the circuit shown in Fig. 4.34, steady state is reached with switch � open. The switch is closed
at � = 0.

Determine: �1� �2�
��1
��

and
��2
��

at � = 0+

Figure 4.34
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SOLUTION

At � = 0�, switch � is open and at � = 0+, it is closed. At � = 0�, the circuit is in steady state
and appears as shown in Fig.4.35(a).

�2(0
�) =

20

10 + 5
= 1�33A

Hence� ��(0
�) = 10�2(0

�) = 10� 1�33 = 13�3V

Since current through an inductor cannot change instantaneously, �2(0+) = �2(0
�) = 1.33 A.

Also, ��(0
+) = ��(0

�) = 13�3V.
The equivalent circuit at � = 0+ is as shown in Fig.4.35(b).

�1(0
+) =

20� 13�3

10
=

6�7

10
= 0.67A

Figure 4.35(a) Figure 4.35(b)

For � � 0+, the circuit is as shown in Fig.4.35(c).

Figure 4.35(c)

Writing KVL clockwise for the left–mesh,
we get

10�1 +
1

	

��
0+

�1(� )�� = 20

Differentiating with respect to �, we get

10
��1
��

+
1

	
�1 = 0

Putting � = 0+, we get

10
��1(0

+)

��
+

1

	
�1(0

+) = 0

�
��1(0

+)

��
=

�1

10� 1� 10�6
�1(0

+) = �0.67� 105A/ sec
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Writing KVL equation to the path made of 20V� � � 10Ω� 2H, we get

10�2 +
2��2
��

= 20

At � = 0+, the above equation becomes

10�2(0
+) +

2��2(0
+)

��
= 20

� 10� 1�33 +
2��2(0

+)

��
= 20

�
��2(0

+)

��
= 3.35A/ sec

EXAMPLE 4.17
Refer the citcuit shown in Fig.4.36. The switch � is closed at � = 0. Find:

(a) �1 and �2 at � = 0+

(b) �1 and �2 at � =�

(c)
��1
��

and
��2
��

at � = 0+

(d)
�2�1
��2

at � = 0+

Figure 4.36
SOLUTION

(a) The circuit symbol for switch conveys that at � = 0�, the switch is open and � = 0+, it is
closed. At � = 0�, since the switch is open, the circuit is not activated. This implies that
all initial conditions are zero. Hence, at � = 0+, inductor is open and capactor is short.
Fig 4.37(a) shows the equivalent circuit at � = 0+.

Figure 4.37(a)
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�1(0
+) =

10

10
= 1A

�1(0
+) = 0� �2(0

+) = 0

Applying KVL to the path, 10V source� � � 10Ω� 10Ω� 2mH, we get

�10 + 10�1(0
+) + �1(0

+) + �2(0
+) = 0

� � 10 + 10 + 0 + �2(0
+) = 0

� �2(0
+) = 0

(b) At � = �, switch � remains closed and circuit is in steady state. Under steady state
conditions, capacitor 	 is open and inductor � is short. Fig. 4.37(b) shows the equivalent
circuit at � =�.

�2(�) =
10

10 + 10
= 0.5A

�1(�) = 0

�1(�) = 0�5� 10 = 5V

�2(�) = 0

Figure 4.37(b)

(c) For � � 0+, the circuit is as shown in Fig. 4.37(c).

Figure 4.37(c)
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�2 =
1

�

��
0+

�2(� )�� =
�1(�)

�2

Differentiating with respect to �, we get

�2
�

=
1

�2

��1
��

Evaluating at � = 0+ we get

��1(0
+)

��
=

�2

�2
�2(0

+)

�
��1(0

+)

��
= 0V/ sec

Applying KVL clockwise to the path 10 V source� � � 10Ω� 4�F, we get

�10 + 10�+
1

	

��
0+

[�(� )� �2(� )]�� = 0

Differentiating with respect to �, we get

10
��

��
+

1

	
[�� �2] = 0

Evaluating at � = 0+, we get

��(0+)

��
=

�2(0
+)� �(0+)

	 � 10

=
0� 1

10� 4� 10�6

	

 ∵ �(0+) = �1(0

+) + �2(0
+)

= 1 + 0
= 1A

�
�

= �25000A/ sec

Applying KVL clockwise to the path 10 V source� � � 10Ω� 10Ω� 2 mH,
we get

�10 + 10�+ 10�2 + �2 = 0

� 10�+ �1 + �2 = 10

Differentiating with respect to �, we get

10
��

��
+

��1
��

+
��2
��

= 0
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At � = 0+, we get

10
��(0+)

��
+

��1(0
+)

��
+

��2(0
+)

��
= 0

� 10(�25000) + 0 +
��2(0

+)

��
= 0

�
��2(0

+)

��
= 25� 104V/ sec

(d) From part (c), we have

1

�

��
0+

�2(� )�� =
�1
10

Differentiating with respect to � twice, we get

1

�

��2
��

=
1

10

�2�1
��2

At � = 0+, we get

1

�

��2(0
+)

��
=

1

10

�2�1(0
+)

��2

Hence�
�2�1(0

+)

��2
= 125� 107V/ sec2

EXAMPLE 4.18
Refer the network shown in Fig. 4.38. Switch � is changed from � to � at � = 0 (a steady state
having been established at position �).

Figure 4.38

Show that at � = 0+.

�1 = �2 =
�

�1 +�2 +�3
� �3 = 0
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SOLUTION

The symbol for switch indicates that at � = 0�, it is in position � and at � = 0+, it is in position
�. The circuit is in steady state at � = 0�. Fig 4.39(a) refers to the equivalent circuit at � = 0�.
Please remember that at steady state 	 is open and � is short.

��1(0
�) = 0� ��2(0

�) = 0� ��2(0
�) = 0� ��1(0

�) = 0

Applying KVL clockwise to the left-mesh, we get

� + ��3(0
�) + 0��2 + 0 = 0

� ��3(0
�) = V volts�

Figure 4.39(a)

Since current in an inductor and voltage across a capacitor cannot change instantaneously, the
equivalent circuit at � = 0+ is as shown in Fig. 4.39(b).

Figure 4.39(b)

�1(0
+) = �2(0

+) since ��1(0
+) = 0

�3(0
+) = 0 since ��2(0

+) = 0

Applying KVL to the path ��3(0
+)� �2 � �3 � �1 � � we get,

 +�2�1(0
+) +�3�2(0

+) +�1�1(0
+) = 0
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Since �1(0+) = �2(0
+), the above equation becomes

� = [�1 +�2 +�3] �1(0
+)

Hence� �1(0
+) = �2(0

+) =
�V

R1 +R2 +R3
A

EXAMPLE 4.19
Refer the circuit shown in Fig. 4.40. The switch � is closed at � = 0.

Find (a)
��1(0

+)

��
and (b)

��2(0
+)

��

Figure 4.40

SOLUTION

The circuit symbol for the switch shows that at
� = 0�, it is open and at � = 0+, it is closed.
Hence, at � = 0�, the circuit is not activated.
This implies that all initial conditions are zero.
That is, ��(0�) = 0 and ��(0

�) = �2(0
�) = 0.

The equivalent circuit at � = 0+ keeping in mind
that ��(0+) = ��(0

�) and ��(0
+) = ��(0

�) is
as shown in Fig. 4.41 (a).

�1(0
+) = 0 and �2(0

+) = 0�

Figure 4.41(a)

Figure. 4.41(b) shows the circuit diagram for � � 0+.

� sin�� = �1�+
1

	

��
0+

�1(� )��

Differentiating with respect to �, we get

�� cos�� = �
��1
��

+
�1
	



Initial Conditions in Network � 309

At � = 0+, we get

�� = �
��1(0

+)

��
+

�1(0
+)

	

�
��1(0

+)

��
=

V0ω

R
A/ sec

Also� � sin�� = �2�+ �
��2
��

Evaluating at � = 0+, we get

0 = �2(0
+)�+ �

��2(0
+)

��

�
��2(0

+)

��
= 0A/ sec

Figure 4.41(b)

EXAMPLE 4.20
In the network of the Fig. 4.42, the switch � is opened at � = 0 after the network has attained
steady state with the switch closed.

(a) Find the expression for �� at � = 0+.

(b) If the parameters are adjusted such that �(0+) = 1, and
��(0+)

��
= �1, what is the value of

the derivative of the voltage across the switch at � = 0+,
�
���
��

(0+)

�
?

Figure 4.42

SOLUTION

At � = 0�, switch is in the closed state and at
� = 0+, it is open. Also at � = 0�, the circuit
is in steady state. The equivalent circuit at
� = 0� is as shown in Fig. 4.43(a).

�(0�) =


�2
and ��(0

�) = 0

Figure 4.43(a)
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For � � 0+, the equivalent circuit is as shown in Fig. 4.43(b).
From Fig. 4.43 (b),

�� = �1�+
1

	

��
0+

�(� )��

� �� = �1�+ ��(�)

At � = 0+, ��(0+) = �1�(0
+) + ��(0

+)

� ��(0+) = �1


�2
+ ��(0

�)

=R1
V

R2
volts

Figure 4.43(b)

(b)

�� = �1�+
1

	

��
0+

�(� )��

�
���
��

= �1
��

��
+

�

	

Evaluating at � = 0+, we get

���(0+)

��
= �1

��(0+)

��
+

�(0+)

	

= �1 � (�1) +
1

	

=
1

C
�R1volts/ sec
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Reinforcement Problems

R.P 4.1

Refer the circuit shown in Fig RP.4.1(a). If the switch is closed at � = 0, find the value of

�2��(0
+)

��2
at � = 0+.

Figure R.P.4.1(a)

SOLUTION

The circuit at � = 0� is as shown in Fig RP 4.1(b).
Since current through an inductor and voltage across a capacitor cannot change

instantaneously, it implies that ��(0+) = 18A and ��(0+) = �180 V.
The circuit for � � 0+ is as shown in Fig. RP 4.1 (c).

Figure R.P.4.1(b) Figure R.P.4.1(c)

Referring Fig RP 4.1 (c), we can write

2� 10�3
���
��

+ 60�� + 288� 103
��

0+

��(�)�� = 0 (4.9)
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At � = 0+, we get

���(0
+)

��
=
�60� 18 + 180

2� 10�3

= �450� 103 A� sec

Differentiating equation (4.9) with respect to �, we get

2� 10�3
�2��
��2

+ 60
���
��

+ 288� 103�� = 0

At � = 0+, we get

�2��(0
+)

��2
=

60(450)103 � 288� 103(18)

2� 10�3

= 1�0908� 1010 A� sec2

R.P 4.2

For the circuit shown in Fig. RP 4.2, determine
�2��(0

+)

��2
and

�3��(0
+)

��3
�

Figure R.P.4.2

SOLUTION

Given

�(�) = 2�(�) =

�
2� � � 0+

0� � � 0�

Hence, at � = 0�, ��(0�) = 0 and ��(0�) = 0.
For � � 0+, the circuit equations are

1

64

���(�)

��
+

1

2

��
0+

��(�)�� = �2 (4.10)

�
1

64

���(�)

��
+ ��(�) = �2 (4.11)
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[Note : �� + �� = �2 because of the capacitor polarity]

At � = 0+, equation (4.10) gives

1

64

���(0
+)

��
+ ��(0

+) = �2

Since, ��(0+) = ��(0
�) = 0, we get

1

64

���(0
+)

��
+ 0 = �2

�
���(0

+)

��
= �128 volts� sec

Differentiating equation (4.10) with respect to � we get

1

64

�2��(�)

��
+

1

2
��(�) = 0 (4.12)

Also�
�� � ��

24
=

1

2

��
0+

���� = �� (4.13)

At � = 0+, we get
��(0

+)� ��(0
+)

24
= ��(0

+)

Since ��(0+) = 0 and ��(0+) = 0, we get ��(0+) = 0.

At � = 0+, equation (4.12) becomes

1

64

�2��(0
+)

��2
+

1

2
��(0

+) = 0

�
1

64

�2��(0
+)

��2
+

1

2
� 0 = 0

�
�2��(0

+)

��2
= 0

Differentiating equation (4.12) with respect to � we get

�
1

64

�3��
��3

+
1

2

���
��

= 0 (4.14)

Differentiating equation (4.13) with respect to �, we get

���
��
�

���
��

24
=

1

2
��
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At � = 0+, we get

�

���(0
+)

��
�

���(0
+)

��
24

=
1

2
��(0

+)

�
�128�

���(0
+)

��
24

= 0

�
���(0

+)

��
= �128 volts� sec

At � = 0+, equation (4.14) becomes

1

64

�3��(0
+)

��3
+

1

2

���(0
+)

��
= 0

�
�3��(0

+)

��3
= 4096 volts� sec3

R.P 4.3

In the network of Fig RP 4.3 (a), switch � is closed at � = 0. At � = 0� all the capacitor voltages
and all the inductor currents are zero. Three node-to-datum voltages are identified as �1, �2 and
�3. Find at � = 0+:

(i) �1, �2 and �3

(ii)
��1
��

,
��2
��

and
��3
��

Figure R.P.4.3(a)

SOLUTION

The network at � = 0+ is as shown in Fig RP-4.3 (b).
Since �� and �� cannot change instantaneously, we have from the network shown in

Fig. RP-4.3 (b),
�1(0

+) = 0

�2(0
+) = 0

�3(0
+) = 0
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Figure R.P.4.3(b)

For � � 0+, the circuit equations are

��1 =
1

	1

��
0+

�1��

��2 =
1

	2

��
0+

�2��

��3 =
1

	3

��
0+

�3��

��������������
��������������

(4.15)

From Fig. RP-4.3 (b), we can write

�1(0
+) =

�(0+)

�1
�

�2(0
+) =

�1(0
+)� �2(0

+)

�2

and �3(0
+) = 0

Differentiating equation (4.15) with respect to �, we get

���1

��
=

�1
	1

�
���2

��
=

�2
	2

and
���3

��
=

�3
	3

At � = 0+, the above equations give

��1(0
+)

��
=

�1(0
+)

	1
=

�(0+)

�1	1

��2(0
+)

��
=

�2(0
+)

	2
=

�1(0
+)� �2(0

+)

�2	2
= 0

and
��3(0

+)

��
=

�3(0
+)

	3
= 0
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R.P 4.4

For the network shown in Fig RP 4.4 (a) with switch � open, a steady-state is reached. The circuit
paprameters are �1 = 10Ω, �2 = 20Ω, �3 = 20Ω, � = 1 H and 	 = 1�F. Take  = 100
volts. The switch is closed at � = 0.

(a) Write the integro-differential
equation after the switch is
closed.

(b) Find the voltage � across 	 be-
fore the switch is closed and give
its polarity.

(c) Find �1 and �2 at � = 0+.

(d) Find
��1
��

and
��2
��

at � = 0+.

(e) What is the value of
��1
��

at
� =�?

Figure R.P.4.4(a)

SOLUTION

The switch is in open state at � = 0�. The network at � = 0� is as shown in Fig RP 4.4 (b).

Figure R.P.4.4(b)

�1(0
�) =



�1 +�2
=

100

30
=

10

3
A

�(0
�) = �1(0

�)�2 =
10

3
� 20 =

200

3
volts

Note that � is short and 	 is open under steady-state condition.
For � � 0+ (switch in closed state),

we have 20�1 +
��1
��

= 100 (4.16)

and 20�2 + 106
��

0+

�2�� = 100 (4.17)
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Also �1(0
+) = �1(0

�) =
10

3
A

and �(0
+) = �(0

�) =
200

3
Volts

From equation (4.16) at � = 0+,

we have
��1(0

+)

��
= 100� 20�

10

3

=
100

3
A�sec

From equation (4.17), at � = 0+, we have

�2(0
+) =

1

20

�
100�

200

3

�
=

5

3
A

Differentiating equation (4.17), we get

20
��2
��

+ 106�2 = 0 (4.18)

From equation (4.18) at � = 0+, we get

20��2(0
+)

��
+ 106�2(0

+) = 0

�
��2(0

+)

��
=
�106 � 5

3

20

=
�106

12
A� sec

At � =�,

�1(�) =
100

20
= 5 A

��1
��

(�) = 0

R.P 4.5

For the network shown in Fig RP 4.5 (a), find
�2�1(0

+)

��2
.

The switch � is closed at � = 0.

Figure R.P.4.5(a)
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SOLUTION

At � = 0�, we have ��(0�) = 0 and �2(0
�) = ��(0

�) = 0. Because of the switching property
of � and 	, we have ��(0

+) = 0 and �2(0
+) = 0. The network at � = 0+ is as shown in

Fig RP 4.5 (b).

Figure R.P.4.5(b)

Referring Fig RP 4.5 (b), we find that

�1(0
+) =

�(0+)

�1

The circuit equations for � � 0+ are

�1�1 +
1

	

��
0+

(�1 � �2)�� = �(�) (4.19)

and �2�2 +
1

	

��
0+

(�2 � �1)��

� �� �
	C(�)

+�
��2
��

= 0 (4.20)

At � = 0+, equation (4.20) becomes

�2�2(0
+) + ��(0

+) + �
��2(0

+)

��
= 0

�
��2(0

+)

��
= 0 (4.21)

Differentiating equation (4.19), we get

�1
��1
��

+
1

	
(�1 � �2) =

��(�)

��
(4.22)

Letting � = 0+ in equation (4.22), we get

�1
��1(0

+)

��
+

1

	

�
�1(0

+)� �2(0
+)
�
=

��(0+)

��

�
��1(0

+)

��
=

1

�1

�
��(0+)

��
�

�(0+)

�1	

�
(4.23)
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Differentiating equation (4.22) gives

�1
�2�1
��2

+
1

	

�
��1
��
�

��2
��

�
=

�2�(�)

��2

Letting � = 0+, we get

�1
�2�1(0

+)

��2
+

1

	

�
��1(0

+)

��
�

��2(0
+)

��

�
=

�2�(0+)

��2

� �1
�2�1(0

+)

��2
= �

1

	

��1(0
+)

��
+

�2�(0+)

��2

�
�2�1(0

+)

��2
= �

1

�1	

�
1

�1

��(0+)

��
�

1

�2
1	

�(0+)

�
+

�2�(0+)

��2

R.P 4.6

Determine ��(0�) and ��(0
+) for the network shown in Fig RP 4.6 (a). Assume that the switch

is closed at � = 0.

Figure R.P.4.6(a)

SOLUTION

Since� is short for DC at steady state, the net-
work at � = 0� is as shown in Fig. RP 4.6 (b).

Applying KCL at junction �, we get

��(0
�)� 5

10
+

��(0
�)� ��(0

�)

20
= 0

Since ��(0�) = 0, we get

��(0
�)� 5

10
+

��(0
�)� 0

20
= 0

� ��(0
�) =

0�5

0�1 + 0�05
=

10

3
volts

Figure R.P.4.6(b)
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Also� ��(0
�) = ��(0

+) =
��(0

�)

20
+

5

10

=
2

3
A

For � � 0+, we can write

�� � 5

10
+

��
10

+
�� � ��

20
= 0

and
�� � ��

20
+

�� � 5

10
+ �� = 0

Simplifying at � = 0+, we get

1

4
��(0

+)�
1

20
��(0

+) =
1

2

and �
1

20
��(0

+) +
3

20
��(0

+) =
�1

6

Solving we get, ��(0
+) =

40

21
= 1�905 volts

Exercise problems

E.P 4.1

Refer the circuit shown in Fig. E.P. 4.1 Switch � is closed at � = 0.

Find �(0+),
��(0+)

��
and

�2�(0+)

��2
.

Figure E.P.4.1

Ans: i(0+) = 0.2A,
di(0+)

dt
= �2� 103A/ sec,

d2i(0+)

dt2
= 20� 106A/ sec2
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E.P 4.2

Refer the circuit shown in Fig. E.P. 4.2. Switch � is closed at � = 0. Find the values of ��
��

��
and

�2�

��2
at � = 0+.

Figure E.P.4.2

Ans: i(0+) = 0,
di(0+)

dt
= 10 A/ sec,

d2i(0+)

dt2
= �1000 A/ sec2

E.P 4.3

Refering to the circuit shown in Fig. E.P. 4.3, switch is changed from position 1 to position 2 at

� = 0. The circuit has attained steady state before switching. Determine �,
��

��
and

�2�

��2
at � = 0+.

Figure E.P.4.3

Ans: i(0+) = 0,
di(0+)

dt
= �40 A/ sec,

d2i(0+)

dt2
= 800 A/ sec2
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E.P 4.4

In the network shown in Fig. E.P.4.4, the initial voltage on 	1 is � and on 	2 is � such that

�1(0
�) = � and �2(0�) = �. Find the values of

��1
��

and
��2
��

at � = 0+.

Figure E.P.4.4

Ans:
dv1(0+)

dt
=

V� � V�
C1R

V/ sec,
dv2(0+)

dt
=

V� � V�
C2R

V/ sec

E.P 4.5

In the network shown in Fig E.P. 4.5, switch � is closed at � = 0 with zero capacitor voltage and

zero inductor current. Find
�2�2
��2

at � = 0+.

Figure E.P.4.5

Ans:
d2v2(0+)

dt2
=

R2V�
R1L1C1

V/ sec2
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E.P 4.6

In the network shown in Fig. E.P. 4.6, switch � is closed at � = 0. Find
�2�1
��2

at � = 0+.

Figure E.P.4.6

Ans:
d2v1(0+)

dt2
= 0 V/ sec2

E.P 4.7

The switch in Fig. E.P. 4.7 has been closed for a long time. It is open at � = 0. Find
��(0+)

��
,

��(0+)

��
, �(�) and �(�).

�

Figure E.P.4.7

Ans:
di(0+)

dt
= 0A/ sec,

dv(0+)

dt
= 20A/ sec, i(�) = 0A, v(�) = 12V
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E.P 4.8

In the circuit of Fig E.P. 4.8, calculate ��(0+),
���(0

+)

��
,
���(0

+)

��
, �
(�), ��(�) and ��(�).

Figure E.P.4.8

Ans: i�(0+) = 0 A,
di�(0+)

dt
= 0 A/ sec

dv�(0+)

dt
= 2 V/ sec, v�(�) = 4V, v�(�) = �20V, i�(�) = 1A

E.P 4.9

Refer the circuit shown in Fig. E.P. 4.9. Assume that the switch was closed for a long time for

� � 0. Find
���(0

+)

��
and ��(0+). Take �(0+) = 8 V.

Figure E.P.4.9

Ans: i�(0+) = 4 A,
di�(0+)

dt
= 0 A/ sec

E.P 4.10

Refer the network shown in Fig. E.P. 4.10. A steady state is reached with the switch � closed and

with � = 10A. At � = 0, switch � is opened. Find �2(0+) and
��2(0

+)

��
.
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Figure E.P.4.10

Ans: v2(0+) = 0,
dv2(0+)

dt
=

10R�R�

C�(R� +R�)(R� +R�)
V� sec.

E.P 4.11

Refer the network shown in Fig. E.P. 4.11. The network is in steady state with switch � closed.

The switch is opened at � = 0. Find ��(0+) and
���(0

+)

��
.

Figure E.P.4.11

Ans: v�(0+) =
V�R�

R� +R� +R�

Volts,

dv�(0+)

dt
=

V�(C� +C�)

(R� +R� +R�)(C�C� +C�C� +C�C�)
V/ sec

E.P 4.12

Refer the network shown in Fig. E.P. 4.12. Find
�2�1(0

+)

��2
.
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Figure E.P.4.12

Ans:
d2i1(0+)

dt2
=

1

R�

�
�10 +

10

R2
�C

2
�

�
A/ sec2

E.P 4.13

Refer the circuit shown in Fig. E.P. 4.13. Find
��1(0

+)

��
. Assume that the circuit has attained

steady state at � = 0�.

Figure E.P.4.13

Ans:
di1(0+)

dt
=

10

R	

A/ sec

E.P 4.14

Refer the network shown in Fig. E.P.4.14. The circuit reaches steady state with switch � closed.

At a new reference time, � = 0, the switch � is opened. Find
��1(0

+)

��
and

�2�2(0
+)

��2
.

Figure E.P.4.14
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Ans:
dv1(0+)

dt
=

�10

C�(R� +R�)
V/ sec,

d2v2(0+)

dt2
=

�10R�

L�C�(R� +R�)
V/ sec2

E.P 4.15

The switch shown in Fig. E.P. 4.15 has been open for a long time before closing at � = 0. Find:
�0(0

�), ��(0�) �0(0
+), ��(0+), �0(�), ��(�) and ��(�).

Figure E.P.4.15

Ans: i(0�) = 0, i�(0
�) = 160mA, i0(0

+) = 65mA, i�(0
+) = 160mA,

i0(�) = 225mA, i�(�) = 0, v�(�) = 0

E.P 4.16

The switch shown in Fig. E.P. 4.16 has been closed for a long time before opeing at � = 0.
Find: �1(0�), �2(0�), �1(0+), �2(0+). Explain why �2(0�) 	= �2(0

+).

Figure E.P.4.16

Ans: i1(0
�) = i2(0

�) = 0.2mA, i2(0
+) = �i1(0

+) = �0.2mA
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E.P 4.17

The switch in the circuit of Fig E.P.4.17 is closed at � = 0 after being open for a long time. Find:
(a) �1(0�) and �2(0�)

(b) �1(0+) and �2(0+)

(c) Explain why �1(0�) = �1(0
+)

(d) Explain why �2(0�) 	= �2(0
+)

Figure E.P.4.17

Ans: i1(0�) = i2(0�) = 0.2 mA, i1(0+) = 0.2 mA, i2(0+) = �0.2mA
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5.1 Introduction

In this chapter, we will introduce Laplace transform. This is an extremely important technique.
For a given set of initial conditions, it will give the total response of the circuit comprising of both
natural and forced responses in one operation. The idea of Laplace transform is analogous to any
familiar transform. For example, Logarithms are used to change a multiplication or division prob-
lem into a simpler addition or subtraction problem and Antilogs are used to carry out the inverse
process. This example points out the essential feature of a transform: They are designed to create
a new domain to make mathematical manipulations easier. After evaluating the unknown in the
new domain, we use inverse transform to get the evaluated unknown in the original domain. The
Laplace transform enables the circuit analyst to convert the set of integrodifferential equations
describing a circuit to the complex frequency domain, where thay become a set of linear alge-
braic equations. Then using algebraic manipulations, one may solve for the variables of interest.
Finally, one uses the inverse transform to get the variable of interest in time domain. Also, in
this chapter, we express the impedance in � domain or complex frequency domain. Hence, we
may analyze a circuit using one of the reduction techniques such as Thevenin theorem or source
transformation discussed in earlier chapters.

5.2 Definition of Laplace transorm

A transform is a change in the mathematical description of a physical variable to facilitate com-
putation. Keeping this definition in mind, Laplace transform of a function �(�) is defined as

���(�)� = � (�) =

��
0

�(�)������ (5.1)

Here the complex frequency is � = � + �	. Since the argument of the exponent � in equation
(5.1) must be dimensionless, it follows that � has the dimensions of frequency and units of inverse
seconds (sec�1).
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The notation implies that once the integral has been evaluated, �(�), a time domain function
is transformed to � (�), a frequency domain function.

If the lower limit of integration in equation (5.1) is��, then it is called the bilateral Laplace
transform. However for circuit applications, the lower limit is taken as zero and accordingly the
transform is unilateral in nature.

The lower limit of integration is sometimes chosen to be 0� to permit �(�) to include 
(�) or
its derivatives. Thus we should note immediately that the integration from 0� to 0+ is zero except
when an impulse function or its derivatives are present at the origin.

Region of convergence

The Laplace transform of a signal �(�) as seen from equation (5.1) is an integral operation. It

exists if �(�)���� is absolutely integrable. That is

��
0

�(�)������ � �. Cleary, only typical

choices of � will make the integral converge. The range of � that ensures the existence of �(�)
defines the region of convergence (ROC) of the Laplace transform. As an example, let us take
(�) = �3�, � � 0. Then

�(�) =

��
0

(�)��(�+��)���

=

��
0

�(��+3)��������

The above integral converges if and only if �� + 3 � 0 or � � 3. Thus, � � 3 defines the
ROC of �(�). Since, we shall deal only with causal signals(� � 0) we avoid explicit mention of
ROC.

Due to the convergence factor, ����, a number of important functions have Laplace trans-
forms, even though Fourier transforms for these functions do not exist. But this does not mean
that every mathematical function has Laplace transform. The reader should be aware that, for
example, a function of the form ��

2
does not have Laplace transform.

The inverse Laplace transform is defined by the relationship:

�
�1�� (�)� = �(�) =

1

2��

�+���
����

� (�)����� (5.2)

where � is real. The evaluation of integral in equation (5.2) is based on complex variable theory,
and hence we will avoid its use by developing a set of Laplace transform pairs.
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5.3 Three important singularity functions

The three important singularity functions employed in circuit analysis are:

(i) unit step function, �(�)
(ii) delta function, 
(�)

(iii) ramp function, �(�).

They are called singularity functions because they are either not finite or they do not possess
finite derivatives everywhere.

The mathematical definition of unit step function is

�(�) =

�
0� � � 0
1� � � 0

(5.3)

Figure 5.1 The unit step function

The step function is not defined at � = 0. Thus,
the unit step function �(�) is 0 for negative values
of �, and 1 for positive values of �. Often it is
advantageous to define the unit step function as
follows:

�(�) =

�
1� � � 0+

0� � � 0�

A discontinuity may occur at time other than
� = 0; for example, in sequential switching, the
unit step function that occurs at � = � is expressed
as �(�� �).

Figure 5.2 The step function occuring at t = a Figure 5.3 The step function occuring at t = �a

Thus� �(�� �) =
�

0� �� � � 0 or � � �
1� �� � � 0 or � � �

Similarly, the unit step function that occurs at � = �� is expressed as �(�+ �).

Thus� �(�+ �) =

�
0� �+ � � 0 or � � ��
1� �+ � � 0 or � � ��
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We use step function to represent an abrupt change in voltage or current, like the changes that
occur in the circuits of control engineering and digital systems. For example, the voltage

�(�) =

�
0� � � �

�� � � �

may be expressed in terms of the unit step function as

�(�) = ��(�� �) (5.4)

The derivative of the unit step function �(�) is the unit impulse function 
(�).

That is� 
(�) =
�

��
�(�) =

��
�

0� � � 0
undefined� � = 0

0� � � 0
(5.5)

The unit impulse function also known as dirac delta fucntion is shown in Fig. 5.4.
The unit impulse may be visualized as very short duration pulse of unit area. This may be

expressed mathematically as:

0+�
0�


(�)�� = 1 (5.6)

Figure 5.4 The circuit

impulse function

where � = 0� denotes the time just before � = 0 and � = 0+ denotes
the time just after � = 0. Since the area under the unit impulse is unity,
it is a practice to write ‘1’ beside the arrow that is used to symbolize
the unit impulse function as shown in Fig. 5.4. When the impulse has
a strength other than unity, the area of the impulse function is equal
to its strength. For example, an impulse function 5
(�) has an area
of 5 units. Figure 5.5 shows impulse functions, 2
(� + 2), 5
(�) and
�2
(�� 3).

Figure 5.5 Three impulse functions
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An important property of the unit impulse function is what is often called the sifting property;
which is exhibited by the following integral:

�2�
�1

�(�)
(�� �0)�� =
�
�(�0)� �1 � �0 � �2
0� �1 � �0 � �2

for a fintie �0 and any �(�) continuous at �0.
Integrating the unit step function results in the unit ramp function �(�).

�(�) =

��
��

�(� )�� = ��(�) (5.7)

or �(�) =

�
0� � � 0
�� � � 0

Figure 5.6 shows the ramp function.

Figure 5.6 The unit ramp function

In general, a ramp is a function that changes at a constant rate.

Figure 5.7 The unit ramp function delayed by �0 Figure 5.8 The unit ramp function advanced by �0

A delayed ramp function is shown in Fig. 5.7. Mathematically, it is described as follows:

�(�� �0) =
�

0� � � �0
�� �0� � � �0
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An advanced ramp function is shown in Fig. 5.8. Mathematically, it is described as follows:

�(�+ �0) =

�
0� � � ��0

�+ �0� � � ��0
It is very important to note that the three sigularity functions are related by differentiation as


(�) =
��(�)

��
� �(�) =

��(�)

��

or by integration as

�(�) =

��
��


(�)��� �(�) =

��
��

�(� )��

5.4 Functional transforms

A functional transform is simply the Laplace transform of a specified function of �. Here we make
an assumption that �(�) is zero for � � 0.

5.4.1 Decaying exponential function

�(�) = �����(�), where � � 0 and �(�) is the unit step function.

�
�
�����(�)

�
= � (�) =

��
0

�(�)��

=

��
0

����������

=
���(�+�)�

(�+ �)

�����
�

�=0

=
1

�+ �

5.4.2 Unit step function

�(�) = �(�)

���(�)� = � (�) =

��
0

������ =
1

�
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5.4.3 Impulse function

�(�) = 
(�)

��
(�)� = � (�) =

��
0�


(�)������ = ����
��
�=0

= 1

Please note that we have used the sifting property of an impulse function.

5.4.4 Sinusoidal function

�(�) = sin	�� � � 0

Since sin	� =
1

2�

	
���� � �����


and ������� = 1

�+ �

we have ��sin	�� = � (�) =
1

2�

��
0

�
���� � ������ ������

=
1

2�


1

�� �	 �
1

�+ �	

�

=
	

�2 + 	2

Table 5.1 gives a list of important Laplace transform pairs. It includes the functions of most
interest in an introductory course on circuit applications.

Table 5.1 Important transform pairs
�(�)(� � 0) � (�)


(�) 1

�(�)
1

�

�
1

�2

����
1

�+ �

sin	�
	

�2 + 	2

cos	�
�

�2 + 	2
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�(�)(� � 0) � (�)

��
�!

��+1

�����
1

(�+ �)2

���� sin	�
	

(�+ �)2 + 	2

���� cos	�
�+ �

(�+ �)2 + 	2

All functions in the above table are represented without multiplied by �(�), since we have ex-
plicity declared that � � 0.

5.5 Operational transforms (properties of Laplace transform)

Operational transforms indicate how mathematical operations performed on either �(�) or � (�)
are converted into the opposite domain. Following operations are of primary interest.

Note: The symbol � means “by the definition”.

5.5.1 Linearity

If ���1(�)� = �1(�) and ���2(�)� = �2(�)

then ���1�1(�) + �2�2(�)� = �1�1(�) + �2�2(�)

Proof :

���1�1(�) + �2�2(�)� �
��
0

[�1�1(�) + �2�2(�)]�
�����

= �1

��
0

�1(�)�
�����+ �2

��
0

�2(�)�
�����

= �1�1(�) + �2�2(�)

EXAMPLE 5.1
Find the Laplace transform of �(�) = (�+������(�)).

SOLUTION

We have the transform pair

���(�)� = 1

�

and �������(�)� = 1

�+ �
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Thus, using linearity property,

���(�)� = � (�) = ����(�)�+ ��������(�)�
=
�

�
+

�

�+ �

=
(A+B)s+Ab

s(s+ b)

5.5.2 Time shifting

If ��(�)� = �(�), then for any real number �0,

��(�� �0)�(�� �0)� = ���0��(�)

Proof :

��(�� �0)�(�� �0)� �
��
0

(�� �0)�(�� �0)������

Since� �(�� �0) =
�

1� �� �0 � 0 or � � �0
0� �� �0 � 0 or � � �0

we get� ��(�� �0)�(�� �0)� =
��
�0

(�� �0)������

Using the transformation of variable,

� = � + �0

we get� ��(�� �0)�(�� �0)� =
��
0

(� )���(	+�0)��

= ���0�
��
0

(� )���	��

= ���0��(�)

EXAMPLE 5.2
Find the Laplace transform of (�), shown in Fig. 5.9.

Figure 5.9
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SOLUTION

Figure 5.10(a)

Figure 5.10(b)

Using Figs. 5.10(a) and 5.10(b), we can write

(�) = 1(�) + 2(�) = �(�� 2)� �(�� 4)

We know that, ���(�)� = 1

�
and using time shifting property, we have

��(�)� = �(�) =
1

�
��2� � 1

�
��4�

� X(s) =
1

s
(e�2� � e�4�)

5.5.3 Shifting in s domain (Frequency-domain shifting)

If ��(�)� = �(�), then
����0�(�)� = �(�� �0)

Proof :

����0�(�)� �
��
0

��0�(�)������

=

��
0

(�)��(���0)���

=�(�� �0)
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EXAMPLE 5.3

Find the Laplace transform of (�) = ����� cos(	0�+ �)�(�).

SOLUTION

Given (�) = ����� cos(	0�+ �)�(�)

= �����[cos	0� cos � � sin	0� sin �]�(�)

= � cos ����� cos	0��(�)�� sin ����� sin	0��(�)

We know the transform pairs,

��cos	0��(�)� = �

�2 + 	2
0

and ��sin	0��(�)� = 	0
�2 + 	2

0

Applying frequency shifting property, we get

�
�
���� cos	0��(�)

�
=

�

�2 + 	2
0

����
���+�

=
�+ �

(�+ �)2 + 	2
0

and �
�
���� sin	0��(�)

�
=

	0
�2 + 	2

0

����
���+�

=
	0

(�+ �)2 + 	2
0

Finally, applying linearity property, we get

������� cos(	0�+ �)�(�)� = � cos � ������ cos	0��(�)� � � sin � ������ sin	0��(�)�
=
� cos �(�+ �)

(�+ �)2 + 	2
0

�� sin �
	0

(�+ �)2 + 	2
0

=
A[(s+ a) cosθ � ω0 sinθ]

(s+ a)2 + ω2
0

5.5.4 Time scaling

If ��(�)� = �(�), then

��(��)� = 1

�
�
��
�

�
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Proof :

��(��)� �
��
0

(��)������

put �� = �

� ��� = ��

Hence ��(��)� =
��
0

(� )���
τ
a
1

�
��

=
1

�

��
0

(� )��
s
a
	�� =

1

�
�
��
�

�

EXAMPLE 5.4
Find the Laplace transform of (�) = sin(2	0�)�(�).

SOLUTION

We know the transform pair,

��sin	0��(�)� = 	0
�2 + 	2

0

Applying scaling property,

��sin 2	0��(�)� = 1

2

�
�� 	0��

2

�2
+ 	2

0

�
��

=
2ω0

s2 + 4ω2
0

5.5.5 Time differentiation

If ��(�)� = �(�), then

�

�
�(�)

��

�
= ��(�)� (0)

Proof :

Let �(�) =
�(�)

��

Then ���(�)� = � (�) �
��
0

�(�)������

=

��
0

�(�)

��
������
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Integrating by parts yields

� (�) = ����(�)
���
0
�

��
0

(�)(������)��

= lim
���

[����(�)]� (0) + �
��
0

(�)������

= 0� (0) + ��(�)

Hence� �

�
�(�)

��

�
= � (�) = ��(�)� (0)

Therefore, differentiation in time domain is equivalent to multiplication by � in the � domain.

Whenever (�) is discontinuous at � = 0 (like a step function), then (0) should be read as
(0�).

The differentiation property can be extended to yield

�

�
��(�)

���

�
= ���(�)� ���1(0) � � � � ��1(0)

When (�) is discontinuous at the origin, the argument 0 on the right side of the above equation
should be read as 0�. Accordingly for a discontinuous function (�) at the origin, we get

�

�
��(�)

���

�
= ���(�)� ���1(0�) � � � � ��1(0�)

EXAMPLE 5.5

Find the Laplace transform of (�) = sin2 	0��(�).

SOLUTION

We find that, (0) = 0

�(�)

��
= 2	0 sin	0� cos	0��(�)

= 	0 sin 2	0��(�) (5.8)

We know that, ��sin	0��(�)� = 	0
�2 + 	2

0
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Applying time scaling property,

��sin 2	0��(�)� = 1

2

�
�� 	0��

2

�2
+ 	2

0

�
��

=
2	0

�2 + 2(	0)2

Taking Laplace transform on both the sides of equation (5.8), we get

�

�
�(�)

��

�
= 	0 ��sin	0��(�)�

� ��(�)� (0) = 2	2
0

�2 + (2	0)2

� X(s) =
2ω2

0

s[s2 + (2ω0)2]

EXAMPLE 5.6
Solve the second order linear differential equation

�
��

(�) + 5��(�) + 6�(�) = (�)

with the initial conditions, �(0) = 2, ��(0) = 1 and (�) = ����(�).

SOLUTION

Taking Laplace transform on both the sides of the given differential equation, we get���2� (�)� ��(0)� ��(0)��+ 5 	�� (�)� �(0)	+ 6� (�) =�(�)

where �(�) = ������(�)� = 1

�+ 1

Substituting the initial conditions, we get

(�2 + 5�+ 6)� (�) =
1

�+ 1
+ 2�+ 11

� � (�) =
2�2 + 13�+ 12

(�+ 1)(�+ 2)(�+ 3)

Using partial fraction expansion, we get

� (�) =
1

2


1

�+ 1

�
+ 6


1

�+ 2

�
� 9

2


1

�+ 3

�

Taking inverse Laplace transform, we get

y(t) =
1

2
e�� + 6e�2� � 9

2
e�3�, t � 0
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5.5.6 Integration in time domain

For a causal signal (�),

If �(�) =

��
0

(� )���

then ���(�)� = � (�) =
�(�)

�

Proof :

��x(t)� = X(s) �
��
0

x(t)e���dt

Dividing both sides by � yields

�(�)

�
=

��
0

(�)
����

�
��

Integrating the right-hand side by parts, we get

�(�)

�
=
����

�
�(�)

����
�

�=0

�
��
0

�(�)
����

�
(��)��

�(�)

�
= �(�)

����

�

����
�

�=0

+

��
0

�(�)������

The first term on the right-hand side evaluates to zero at both limits, because

��� = 0 and �(0) =

0�
0

(� )�� = 0

Hence� � (�) =
�(�)

�

Thus, integration in time domain is equivalent to division by � in the � domain.

EXAMPLE 5.7
Consider the RC circuit shown in Fig. 5.11. The input is the rectangular pulse shown in Fig. 5.12.
Find �(�) by assuming circuit is initially relaxed.
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Figure 5.11 Figure 5.12

SOLUTION

Applying KVL to the circuit represented by Fig. 5.11, we get

��(�) +
1

 

��
0

�(� )�� = �(�)

� ��(�) +
1

 

��
0

�(� )�� = !
[�(�� �)� �(�� �)]

Taking Laplace transforms on both the sides, we get

�I(�) +
1

 �
I(�) =

!

�
(���� � ����)

� I(�) =

!

�

�+
1

� 

(���� � ����)

We know the transform pair,

�������(�)� = 1

�+ �

and then using the time-shift property, we can find inverse of I(�).

That is� �(�) =
!

�
��

t
RC �(�)

����
�����

� �

�
��

t
RC �(�)

���
�����

� i(t) =
V�
R

�
e�

(���)
�� u(t� a)� e�

(���)
�� u(t� b)

�

5.5.7 Differentiation in the s domain

For a signal (�), � � 0, we have

����(�)� = ��(�)

��
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Proof :
For a causal signal, (�), the Laplace transform is given by

��(�)� = �(�) =

��
0

(�)������

Differentiating both the sides with respect to �, we get

��(�)

��
=

��
0

(�)(������)��

� ��(�)

��
=

��
0

[��(�)]������

Hence� ����(�)� = ��(�)

��
or ���(�)� = ���(�)

��

In general� ����(�)� = (�1)� �
��(�)

���

EXAMPLE 5.8
Find the Laplace transform of 1(�) = ���3��(�).

SOLUTION

We know that,

�������(�)� = 1

�+ �

Hence ����3��(�)� = 1

�+ 3

Using the differentiation in � domain property,

��1(�)� =�1(�) =
��
��


1

�+ 3

�

=
1

(s+ 3)2

5.5.8 Convolution

If ��(�)� =�(�)

and ��"(�)� =#(�)

then ��(�) 
 "(�)� =�(�)#(�)

where 
 indicates the convolution operator.
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Proof :

(�) 
 "(�) =
��

��

(� )"(�� � )��

Since (�) and "(�) are causal signals, the convolution in this case reduces to

(�) 
 "(�) =
��
0

(� )"(�� � )��

Hence� ��(�) 
 "(�)� =
��
0

�
� ��

0

(� )"(�� � )��
�
� ������

Interchanging the order of integrals, we get

��(�) 
 "(�)� =
��
0

(� )

�
� ��

0

"(�� � )������
�
� ��

Using the change of variable $ = �� � in the inner integral, we get

��(�) 
 "(�)� =
��
0

(� )���	

�
� ��

0

"($)�����$

�
� ��

=�(�)#(�)

Please note that this theorem reduces the complexity of evaluating the convolution integral to
a simple multiplication.

EXAMPLE 5.9
Find the convolution of "(�) = ��� and �(�) = ��2�.

SOLUTION

"(�) 
 �(�) = �
�1 �#1(�)� (�)�

= �
�1
��

1

�+ 1

��
1

�+ 2

��

= �
�1
�

1

�+ 1
+

�1
�+ 2

�
= e�� � e�2�, t � 0
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EXAMPLE
�

5.10
Find the convolution of two indentical rectangular pulses. Each rectangular pulse has unit ampli-
tude and duration equal to 2% seconds. Also, the pulse is centered at � = % .

SOLUTION

� �

Figure 5.13

Let the pulse be as shown in Fig. 5.13.
From the Fig. 5.13, we can write

(�) = �(�)� �(�� 2% )

Taking Laplace transform, we get

�(�) =
1

�
� 1

�
��2��

=
1

�
(1� ��2��)

Let �(�) = (�) 
 (�)
Then� � (�) =�2(�)

=


1� ��2��

�

�2

� � (�) =
1

�2
� 2

�2
��2�� +

1

�2
��4��

Figure 5.14

Taking inverse Laplace transform, we get

�(�) = ��(�)� 2(�� 2% )�(�� 2% ) + (�� 4% )�(�� 4% )

= �(�)� 2�(�� 2% ) + �(�� 4% )

y(t) = x(t) � x(t)

5.5.9 Initial-value theorem

The initial-value theorem allows us to find the initial value (0)
directly from its Laplace transform �(�).

If (�) is a causal signal,

then� (0) = lim
���

��(�) (5.9)

Proof :
To prove this theorem, we use the time differentiation property.

�

�
�(�)

��

�
= ��(�)� (0) =

��
0

�

��
������ (5.10)

� The problems with � are better understood after the inverse Laplace transforms are studied.
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If we let ���, then the integral on the right side of equation (5.10) vanishes due to damping
factor, ����.

Thus� lim
���

[��(�)� (0)] = 0

� (0) = lim
���

��(�)

EXAMPLE 5.11
Find the initial value of

� (�) =
�+ 1

(�+ 1)2 + 32

SOLUTION

�(0) = lim
���

��(�) = lim
���

�


�+ 1

(�+ 1)2 + 32

�

= lim
���

�2 + �

(�+ 1)2 + 32

= lim
���

�2

1 +

1

�

�

�2

1 +

2

�
+

10

�2

� = 1

We know the transform pair:

������ cos ��� = �+ �

(�+ �)2 + �2

Hence, inverse Laplace transform of � (�) yields

f(t) = e�� cos 3t

At � = 0, we get �(0) = 1.
This verifies the theorem.

5.5.10 Final-value theorem

The final-value theorem allows us to find the final value (�) directly from its Laplace transform
�(�).

If (�) is a causal signal,

then lim
���

(�) = lim
��0

��(�)

Proof :

The Laplace transform of
�(�)

��
is given by

��(�)� (0) =
��
0

�(�)

��
������
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Taking the limit �� 0 on both the sides, we get

lim
��0

[��(�)� (0)] = lim
��0

��
0

�(�)

��
������

=

��
0

�(�)

��

�
lim
��0

����
�
��

=

��
0

�(�)

��
��

= (�)	�0
= (�)� (0)

Since� lim
��0

[��(�)� (0)] = lim
��0

[��(�)]� (0)
we get� (�)� (0) = lim

��0
[��(�)� (0)]

Hence� (�) = lim
��0

[��(�)]

This proves the final value theorem.

The final value theorem may be applied if, and only if, all the poles� of �(�) have a real part
that is negative.

The final value theorem is very useful since we can find (�) from �(�). However, one
must be careful in using final value theorem since the function (�) may not have a final value
as � � �. For example, consider (�) = sin �� having �(�) =

�

�2 + �2
. Now we know

lim
���

sin �� does not exit. However, if we uncarefully use the final value theorem in this case, we

would obtain:
lim
��0

��(�) = lim
��0

�
�

�2 + �2
= 0

Note that the actual function (�) does not have a limiting value as � � �. The final value
theorem has failed because the poles of�(�) lie on the �	 axis. Therefore, we conclude that for
final value theorem to give a valid result, poles of�(�) should not lie to right side of the �-plane
or on the �	 axis.

EXAMPLE 5.12
Find the final value of

�(�) =
10

(�+ 1)2 + 102

� Consider a function, X(s) =
P (s)

Q(s)
. The roots of the denomoniator polymial, Q(s) are called poles (�) and the

roots of the numerator polynomial, P (s) are called zeros (O).
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SOLUTION

lim
���

(�) = (�)

= lim
��0

[��(�)] = lim
��0

�10

(�+ 1)2 + 102
= 0

We know the Laplace transform pair

�
	
���� sin ��



=

�

(�+ �)2 + �2

Hence� (�) = �
�1��(�)�

= �
�1
�

10

(�+ 1)2 + 102

�
= ��� sin 10�

Thus� (�) = 0

This verifies the result obtained from final-value theorem.

5.5.11 Time periodicity

Let us consider a function (�) that is periodic as
shown in Fig. 5.15. The function (�) can be
represented as the sum of time-shifted functions
as shown in Fig. 5.16.

Figure 5.15 A periodic function Figure 5.16 Decomposition of periodic function

Hence� (�) = 1(�) + 2(�) + 3(�) + � � �
= 1(�) + 1(�� % )�(�� % ) + 1(�� 2% )�(�� 2% ) + � � � (5.11)

where 1(�) is the waveform described over the first period of (�). That is, 1(�) is the same as
the function (�) gated� over the interval 0 � � � % .

�gating means the function x(t) is multiplied by 1 over the interval 0 � t � T and elsewhere by 0.
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Taking the Laplace transform on both sides of equation (5.11) with the time-shift property
applied, we get

�(�) =�1(�) +�1(�)�
��� +�1(�)�

�2�� + � � �
� �(�) =�1(�)(1 + �

��� + ��2�� + � � � )
But 1 + �+ �2 + � � � = 1

1� �� 	�	 � 1

Hence, we get �(�) =�1(�)


1

1� ����
�

(5.12)

In equation (5.12), �1(�) is the Laplace transform of (�) defined over first period only.
Hence, we have shown that the Laplace transform of a periodic function is the Laplace transform
evaluated over its first period divided by 1� ����.

EXAMPLE 5.13
Find the Laplace transform of the periodic signal (�) shown in Fig. 5.17.

Figure 5.17

SOLUTION

From Fig. 5.17, we find that % = 2 Seconds.
The signal (�) considered over one period is donoted as 1(�) and shown in Fig. 5.18(a).

Figure 5.18(a) Figure 5.18(b) Figure 5.18(c)
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The signal 1(�) may be viewed as the multiplication of (�) and &(�).

That is� 1(�) = (�)&(�)

= [��+ 1][�(�)� �(�� 1)]

� 1(�) = ���(�) + ��(�� 1) + �(�)� �(�� 1)

= ���(�) + (�� 1 + 1)�(�� 1) + �(�)� �(�� 1)

= ���(�) + (�� 1)�(�� 1) + �(�� 1) + �(�)� �(�� 1)

= �(�)� ��(�) + (�� 1)�(�� 1)

= �(�)� �(�) + �(�� 1)

Taking Laplace Transform, we get

�1(�) =
1

�
� 1

�2
+

1

�2
���

=
�� 1 + ���

�2

Hence� X(s) =
X1(s)

1� e���
=

(s� 1 + e��)

s2(1� e�2�)

5.6 Inverse Laplace transform

The inverse Laplace transform of�(�) is defined by an integral operation with respect to variable
� as follows:

(�) =
1

2�

�+���
����

�(�)����� (5.13)

Since � is complex, the solution requries a knowledge of complex variables. In otherwords,
the evaluation of integral in equation (5.13) requires the use of contour integration in the complex
plane, which is very difficult. Hence, we will avoid using equation (5.13) to compute inverse
Laplace transform.

In many situations, the Laplace transform can be expressed in the form

�(�) =
' (�)

((�)
(5.14)

where ' (�) = ���
� + ���1�

��1 + � � � + �1�+ �0
((�) = ���

� + ���1�
��1 + � � � + �1�+ �0� �� �= 0

The function �(�) as defined by equation (5.14) is said to be rational function of �, since
it is a ratio of two polynomials. The denominator ((�) can be factored into linear factors.
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A partial fraction expansion allows a strictly proper rational function
' (�)

((�)
to be expressed as a

factor of terms whose numerators are constants and whose denominator corresponds to linear or
a combination of linear and repeated factors. This in turn allows us to relate such terms to their
corresponding inverse transform.

For performing partial fraction technique on �(�), the function �(�) has to meet the follow-
ing conditions:

(i) �(�) must be a proper fraction. That is, ) � �. When �(�) is improper, we can use long
division to reduce it to proper fraction.

(ii) ((�) should be in the factored form.

EXAMPLE 5.14
Find the inverse Laplace transform of

�(�) =
2�+ 4

�2 + 4�+ 3

SOLUTION

�(�) =
2�+ 4

�2 + 4�+ 3

=
2(�+ 2)

(�+ 1)(�+ 3)
=

�1

�+ 1
+

�2

�+ 3

where� �1 = (�+ 1)�(�)	�=�1

=
2(�+ 2)

(�+ 3)

����
�=�1

= 1

�2 = (�+ 3)�(�)	�=�3

=
2(�+ 2)

(�+ 1)

����
�=�3

= 1

Hence� �(�) =
1

�+ 1
+

1

�+ 3

We know that: �������(�)� = 1

�+ *

Therefore� x(t) = [e�� + e�3�]u(t)

EXAMPLE 5.15
Find the inverse Laplace transform of

�(�) =
�2 + 2�+ 5

(�+ 3)(�+ 5)2
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SOLUTION

Let �(�) =
�1

�+ 3
+

�2

�+ 5
+

�3

(�+ 5)2

where �1 = (�+ 3)�(�)	�=�3

=
�2 + 2�+ 5

(�+ 5)2

����
�=�3

= 2

�2 =
1

1!

�

��
[(�+ 5)2�(�)]

����
�=�5

=
�

��


�2 + 2�+ 5

�+ 3

�����
�=�5

=
�2 + 6�+ 1

(�+ 3)2

����
�=�5

= �1

�3 = (�+ 5 )2�(�)
��
�=�5

=
�2 + 2�+ 5

(�+ 3)

����
�=�5

= �10

Then �(�) =
2

�+ 3
� 1

�+ 5
� 10

(�+ 5)2

Taking inverse Laplace transform, we get

(�) = 2��3� � ��5� � 10���5�� � � 0

or x(t) = (2e�3� � e�5� � 10te�5�)u(t)

Reinforcement problems

R.P 5.1

Find the Laplace transform of: (a) cosh(��) (b) sinh(��)

SOLUTION

(a) cosh(��) =
1

2
[��� + ����]

We know the Laplace transform pair:

������� = 1

�+ �

and ������ = 1

�� �
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Applying linearity property, we get,

��cosh(��)� = 1

2
������+ 1

2
�������

=
1

2


1

�� � +
1

�+ �

�

=
�

�2 � �2

(b) sinh �� =
1

2
[��� � ����]

Applying linearity property,

��sinh(��)� = 1

2


1

�� � �
1

�+ �

�

=
a

s2 � a2

R.P 5.2

Find the Laplace transform of �(�) = cos(	�+ �).

SOLUTION

Given �(�) = cos(	�+ �)

= cos � cos	�� sin � sin	�

Applying linearity property, we get,

���(�)� = � (�)

= cos � ��cos	�� � sin � ��sin	��
= cos �

�

�2 + 	2
� sin �

	

�2 + 	2

=
s cosθ � ω sinθ

s2 + ω2

R.P 5.3

Find the Laplace transform of each of the following functions:

(a) (�) = �2 cos(2�+ 30�)�(�)

(b) (�) = 2��(�)� 4
�

��

(�)

(c) (�) = 5�

�
�

3

�

(d) (�) = 5��
t
2�(�)
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SOLUTION

(a) Let us first find the Laplace transform of cos(2�+ 30�)�(�)

� �cos(2�+ 30�)�(�)� = � �cos 30� cos 2��(�)� sin 30� sin 2��(�)�
= cos 30���cos 2��(�)� � sin 30���sin 2��(�)�
= cos 30�


�

�2 + 4

�
� sin 30�


2

�2 + 4

�

=
� cos 30� � 2 sin 30�

�2 + 4

The Laplace transform of (�) is now found by using differentiation in � domain property.

�
�
�2 cos(2�+ 30�)

�
=
�2

��2
	
��cos(2�+ 30�)�(�)�


=
�2

��2


� cos 30� � 2 sin 30�

�2 + 4

�

=
�2

��2

�
���

3

2
�� 1

�2 + 4

�
���

=
�

��

�

��

�
���

3

2
�� 1

�2 + 4

�
���

=
�

��

�

��

��
3

2
�� 1

��
�2 + 4

��1

�

=
�

��

��
3

2

�
�2 + 4

��1

�
� 2�

�
3

2
�� 1

��
�2 + 4

��2

�

=


3

2
(�2�)

(�2 + 4)2
� 2


3

2
�� 1

(�2 + 4)2
�

2�


3

2
(�2 + 4)2

+

8�2

�
3

2
�� 1

�

(�2 + 4)3

=
8� 12

�
3s� 6s2 +

�
3s2

(s2 + 4)3

(b) (�) = 2��(�)� 4
�

��

(�)

��(�)� = �(�) = 2����(�)� � 4�

�
�

��

(�)

�
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We know that whenever a function �(�) is discontinuous at the origin, we have �
�
�

��
�(�)

�
= �� (�) � �(0�). Applying this relation to the second term on the right side of the above
equation, we get

�(�) = 2
1

�2
� 4[�� 1� 
(0�)]

=
2

�2
� 4[�� 0]

=
2

s2
� 4s

(c) (�) = 5�

�
�

3

�
Using scaling property,

���(��)� = 1

�
�
��
�

�
we get� ��(�)� =�(�) = 5� 1

1+3
���(�)�

��
�

s
1
3

�

= 5� 1

1+3
�

1

�

�
��

�
s
1
3

�

=
5

s

(d) (�) = 5��
t
2�(�)

We know the Laplace transform pair:

�������(�)� = 1

�+ �

Hence� ��(�)� = �(�) = 5�
 
��

1
2 ��(�)

!
= 5

1

�+
1

2

=
10

2s+ 1

R.P 5.4

Find the Laplace transform of the following functions:

(a) (�) = � cos ��

(b) (�) =
1

2�2
sin �� sinh(��)

(c) (�) =
sin2 	�

�
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SOLUTION

(a) (�) = � cos ��

We know that ����(�)� = � �

��
� (�)

Let �(�) = cos ��

� � (�) =
�

�2 + �2

Hence ��� cos ��� = ����(�)� = � �

��


�

�2 + �2

�

=
s2 � a2

(s2 + a2)2

(b) (�) =
1

2�2
sin �� sinh ��

=
1

2�2


1

2
��� sin ��� 1

2
���� sin ��

�

=
1

4�2
	
��� sin ��� ���� sin ��


We know the shifting in � domain property:

����0��(�)� = � (�)	��(���0)

Applying this property along with linearity property, we get

��(�)� =�(�)

=
1

4�2
	
����� sin ��� � ������ sin ���


=
1

4�2


�

�2 + �2

����
�����

� �

�2 + �2

����
���+�

�

=
1

4�2


�

(�� �)2 + �2 �
�

(�+ �)2 + �2

�

=
s

[(s� a)2 + a2] [(s+ a)2 + a2]

(c) (�) =
1

�
sin2 	�

We know that ���(�)� = � (�) =

��
0

�(�)������
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Hence�

��
�

� (�)�� =

��
0

�(�)

��
�

��������

=

��
0

�(�)


����

��
��
�

��

=

��
0

�(�)

�
������

= �


�(�)

�

�
In the present case� �(�) = sin2 	�

=


1

�2
���� � 1

�2
�����

�2

=
��2�� � 2 + ���2��

�4
Hence� � (�) = �1

4


1

�� �2	
�
+

1

2

�
1

�

�
� 1

4


1

�+ �2	

�

Hence,

�(�) = �

�
1

�
sin2 	�

�

= �

�
1

�
�(�)

�

=

��
�

� (�)�� = lim
���

��
�

�()�

= lim
���


ln(� �2	)� ln(�� �2	)� 2 ln+ 2 ln �+ ln(+ �2	)� ln(�+ �2	)

�4
�

= �1

4
ln

�
2 + 4	2

2

�
���

+
1

4
ln


�2 + 4	2

�2

�

=
1

4
ln


s2 + 4ω2

s2

�

R.P 5.5

Consider the pulse shown in Fig. R.P. 5.5, where �(�) = �2� for 0 � � � % . Find � (�) for the
pulse.
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Figure R.P. 5.5

SOLUTION

Figure R.P. 5.5(a)

The discrete pulse �(�) could be imagined as the prod-
uct of signal (�) and &(�) as shown in Fig. R.P. 5.5(a)
and (b) respectively.

That is� �(�) = (�)&(�)

= �2�[�(�)� �(�� % )]
= �2��(�)� �2��(�� % )
= �2��(�)� �2(���+� )�(�� % )
= �2��(�)� �2� �2(��� )�(�� % )

Hence� ���(�)� = � (�) =
1

�� 2
� �2� ����

�� 2

=
1

�� 2
� ��� (��2)

�� 2

=
1� e�� (��2)

(s� 2)

Alternate method:

���(�)� = � (�) �
��
0

�(�)������

=

��
0

�2�������

=
1� e�� (��2)

(s� 2)
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R.P 5.6

Find the Laplace transform of �(�) shown in Fig. R.P. 5.6.

Figure R.P. 5.6

SOLUTION

�(�) is a discrete pulse and can be expressed mathematically as:

Figure R.P. 5.6(a)

�(�) = (�)&(�)

= sin��[�(�)� �(�� 1)]

= sin���(�)� sin���(�� 1)

= sin���(�)� sin[�(�� 1 + 1)]�(�� 1)

� �(�) = sin���(�)� sin[�(�� 1)] cos�(�� 1)

� cos[�(�� 1)] sin��(�� 1)

= sin���(�) + sin[�(�� 1)]�(�� 1)

Hence� � (�) = ���(�)� = �

�2 + �2
+

��1��

�2 + �2

=
π

s2 + π2 [1 + e��]

R.P 5.7

Determine the Laplace transform of �(�) shown in Fig. R.P. 5.7.

Figure R.P. 5.7
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SOLUTION

Figure R.P. 5.7(a)

We can write,

�(�) = (�)&(�)

=


5

2
�

�
[�(�)� �(�� 2)]

=
5

2
��(�)� 5

2
��(�� 2)

=
5

2
��(�)� 5

2
(�� 2 + 2)�(�� 2)

=
5

2
��(�)� 5

2
(�� 2)�(�� 2)� 5�(�� 2)

Hence� ���(�)� = � (�)=
5

2

�
1

�2

�
� 5

2

�
1

�2

�
��2�� 5

�
��2�

=
5

2s2
[1� e�2� � 2se�2�]

R.P 5.8

Find the Laplace transform of �(�) shown in Fig. R.P. 5.8.

Figure R.P. 5.8

SOLUTION

The equation of a straight line is � = ) + ,, where ) = slope of the line and , = intercept on
�-axis.

Hence, �(�) =
�5
3
�+ 5

When �(�) = �2, let us find �.
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Figure R.P. 5.8(a)

That is� �2 = �5
3
�+ 5

� � = 4-2 Seconds

Mathematically,

�(�) = (�)&(�)

=

�5
3
�+ 5

�
[�(�)� �(�� 4-2)]

=
�5
3
��(�) +

5

3
��(�� 4-2) + 5�(�)� 5�(�� 4-2)

=
�5
3
��(�) +

5

3
(�� 4-2 + 4-2)�(�� 4-2)

+5�(�)� 5�(�� 4-2)

=
�5
3
��(�) +

5

3
(�� 4-2)�(�� 4-2) + 7�(�� 4-2)

+5�(�)� 5�(�� 4-2)

=
�5
3
��(�) +

5

3
(�� 4-2)�(�� 4-2) + 2�(�� 4-2) + 5�(�)

Hence� � (�) = ���(�)�
=
�5
3�2

+
5

3�2
��4�2� +

2

�
��4�2� +

5

�

=
�5 + 5e�4�2� + 6se�4�2� + 15s

3s2

R.P 5.9

If �(0�) = �3 and 15�(�) � 4
(�) = 8�(�) + 6� �(�), find �(�) (hint: by taking the Laplace
transform of the differential equation, solving for � (�) and by inverting, find �(�)).

SOLUTION

Given, 15�(�)� 4
(�) = 8�(�) + 6� �(�)
Taking Laplace transform on both the sides, we get

15

�
� 4 = 8� (�) + 6[�� (�)� �(0�)]

� 15

�
� 4 = 8� (�) + 6�� (�) + 18

Therefore� � (�)(6�+ 8) = �18 + 15� 4�

�

� � (�) =
�18

(6�+ 8)
+

15� 4�

�(6�+ 8)

=
�22�+ 15

6�

�
�+

4

3

� =
�1

�
+

�2

�+
4

3
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The constants �1 and �2 are found using the theory of partial fractions.

�1 =
�22�+ 15

6

�
�+

4

3

�
��������
�=0

= 1-875

�2 =
�22�+ 15

6�

����
�=�4

3

= �5-542

Hence� � (�) =
1-875

�
� 5-542

�+
4

3

Taking the inverse, we get f(t) =
�
1.875� 5.542e

�4
3 �
�
u(t)

R.P 5.10

Find the inverse Laplace transform of the following functions:

(a) � (�) =
�+ 1

�2 + 4�+ 13

(b) � (�) =
3���

�2 + 2�+ 17

SOLUTION

(a) � (�) =
�+ 1

(�+ 2)2 + 9

=
(�+ 2)� 1

(�+ 2)2 + 9

=
�+ 2

(�+ 2)2 + 32
� 1

(�+ 2)2 + 32

=
�+ 2

(�+ 2)2 + 32
� 1

3

3

(�+ 2)2 + 32

The determination of the Laplace inverse makes use of the following two Laplace transform
pairs:

������ sin ��� = �

(�+ �)2 + �2

������ cos ��� = �+ �

(�+ �)2 + �2

Hence� �(�) = �
�1�� (�)�

= e�2� cos 3t� 1

3
e�2� sin 3t

(b) � (�) =
3���

�2 + 2�+ 17
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Let � (�) = ����(�)

where �(�) =
3

�2 + 2�+ 17
=

3

(�+ 1)2 + 42

=
3

4


4

(�+ 1)2 + 42

�

� (�) =
3

4
��� sin 4�

Since � (�) = ����(�)

we get� �(�) = (�� 1)

Therefore� �(�) =
3

4
��(��1) sin[4(�� 1)]� � � 1

f(t) =
3

4
e�(��1) sin[4(t� 1)]u(t� 1)

Laplace transform method for solving a set of differential equations:

1. Identify the circuit variables such as inductor currents and capacitor voltages.

2. Obtain the differential equations describing the circuit and keep a watch on the initial con-
ditions of the circuit variables.

3. Obtain the Laplace transform of the various differential equations.

4. Using Cramer’s rule or a similar technique, solve for one or more of the unknown variables,
obtaining the solution in � domain.

5. Find the inverse transform of the unknown variables and thus obtain the solution in the time
domain.

R.P 5.11

Referring to the �. circuit of Fig. R.P. 5.11, (a) write a differential equation for the inductor
current ��(�). (b) Find /�(�), the Laplace transform of ��(�). (c) Solve for ��(�).

Figure R.P. 5.11
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SOLUTION

(a) Applying KVL clockwise, we get

10��(�) + 5
���
��

� 5�(�� 2) = 0

(b) Taking Laplace transform of the above equation, we get

10/�(�) + 5[�/�(�)� ��(0�)] = 5

�
��2�

� /�(�) =

5

�
��2� + 5��(0

�)

5�+ 10

=
��2� + 5� 10�3�

�(�+ 2)

= ��2�


�1

�
+

�2

�+ 2

�
+

5� 10�3�

�(�+ 2)

where �1 =
1

�+ 2

����
�=0

=
1

2

�2 =
1

�

����
�=�2

= �1

2

Hence� I�(s) =
1

2
e�2�


1

s
� 1

s+ 2

�
+

5� 10�3

(s+ 2)

(c) Taking Inverse Laplace transform, we get

��(�) =
1

2

	
�(�)� ��2��(�)



����2

+ 5� 10�3��2��(�)

=
1

2

	
u(t� 2)� e�2�u(t� 2)



+ 5� 10�3e�2�u(t)

R.P 5.12

Obtain a single integrodifferential equation in terms of �� for the circuit of Fig. R.P. 5.12. Take
the Laplace transform, solve for /�(�), and then find ��(�) by making use of inverse transform.

Figure R.P. 5.12
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SOLUTION

Applying KVL clockwise to the right-mesh, we get

4�(�) + �� + 10

��
0

����+ 4[�� � 0-5
(�)] = 0

Taking Laplace transform, we get

4
1

�
+ /�(�) +

10/�(�)

�
+ 4/�(�)� 2 = 0

� /�(�) =
2�� 4

5�+ 10

= 0.4� 1.6

s+ 2

Taking inverse Laplace transform, we get

i�(t) = 0.4δ(t)� 1.6e�2�u(t) Amps.

R.P 5.13

Refer the circuit shown in Fig. R.P. 5.13. Find �(0) and �(�) using initial and final value theorems.

Figure R.P. 5.13

SOLUTION

Applying KVL we get

�+ 2
��

��
= 10

Taking Laplace transform, on both the sides, we get

/(�) + 2[�/(�)� �(0�)] = 10

�

� /(�) + 2[�/(�)� 1] =
10

�

� /(�)[1 + 2�] =
10

�
+ 2
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� /(�) =
10

�(1 + 2�)
+

2

1 + 2�

=
10 + 2�

�(1 + 2�)

=
5 + �

�

�
�+

1

2

�

According to initial value theorem,

�(0) = lim
���

�/(�)

= lim
���

�
(�+ 5)

�

�
�+

1

2

�

= lim
���

1 +
5

�

1 +
1

2�

= 1

We know from fundamentals for an inductor, �(0+) = �(0�) = �(0). Hence, �(0) found using
initial value theorem verifies the initial value of �(�) given in the problem.

From final value theorem,

�(�) = lim
��0

�/(�)

= lim
��0

�(�+ 5)

�

�
�+

1

2

� =
5

1+2
= 10 A

R.P 5.14

Find �(�) and ��(�) for the circuit shown in Fig. R.P. 5.14 when ��(0) = 10 V and �(0) = 0 A. The
input source is �� = 15�(�) V. Choose � so that the roots of the characteristic equation are real.

Figure R.P. 5.14
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SOLUTION

Applying KVL clockwise, we get

.
��

��
+ �� +�� = ��(�) (5.15)

The differential equation describing the variable �� is

 
���
��

= � (5.16)

The Laplace transform of equation (5.15) is

.[�/(�)� �(0) + !�(�) +�/(�) = !�(�)] (5.17)

The Laplace transform of equation (5.16) is

 [�!�(�)� ��(0) = /(�)] (5.18)

Noting that �(0) = 0, substituting for  and . and rearranging equation (5.17) and (5.18), we
get,

[�+ �]/(�) + !�(�) = !�(�) =
15

�
(5.19)

�/(�) + 1

2
�!�(�) = 5 (5.20)

Putting equations (5.19) and (5.20) in matrix form, we get�
� �+ � 1

�1 1

2
�

�
�� /(�)

!�(�)

�
=

�
� 15

�

5

�
� (5.21)

Solving for /(�) using Cramer’s rule, we get

/(�) =
5

�2 +��+ 2

The inverse Laplace transform of /(�) will depend on the value of �. The equation
�2 + �� + 2 = 0 is defined as the characteristic equation. For the roots of this equation to
be real, it is essential that �2 � 4�, � 0�.

This means that� �2 � 4� 1� 2 � 0

� � � 2

2

�The condition b2 � 4ac � 0 is with respect to algebraic equaion ax2 + bx+ c = 0.
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Let us choose the value of � as 3

Then /(�) =
5

�2 + 3�+ 2
=

5

(�+ 1)(�+ 2)

� /(�) =
�1

�+ 1
+

�2

�+ 2

where �1 =
5

�+ 2

����
�=�1

= 5

�2 =
5

�+ 1

����
�=�2

= �5

Hence� /(�) =
5

�+ 1
� 5

�+ 2

Taking inverse Laplace transform, we get

i(t) = 5e��u(t)� 5e�2�u(t)

Please note that � = 0 gives �(0) = 0 and � =� gives �(�) = 0.
Solving the matrix equation (5.21) for !�(�), using Cramer’s rule, we get

!�(�) =
10�2 + 10��+ 30

�(�2 +��+ 2)

Substituting the value of �, we get

!�(�) =
10(�2 + 3�+ 3)

�(�+ 1)(�+ 2)

Using partial fraction expansion, we can write,

!�(�) =
�1

�
+

�2

�+ 1
+

�3

�+ 2

where, �1 = 15, �2 = �10, �3 = 5

Hence� !�(�) =
15

�
� �10
�+ 1

+
5

�+ 2

Taking inverse Laplace transform, we get

v�(t) = 15u(t)� 10e��u(t) + 5e�2�u(t)

Verification:
Putting � = 0, we get

��(0) = 15� 10 + 5 = 10 V

��(�) = 15� 0 + 0 = 15 V

This checks the validity of results obtained.
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R.P 5.15

For the circuit shown in Fig. R.P. 5.15, the steady state is reached with the 100 V source. At � = 0,

switch � is opened. What is the current through the inductor at � =
1

2
seconds ?

Figure R.P. 5.15

SOLUTION

At � = 0�, the circuit is as shown in Fig. 5.15(a).

�2(0
+) = �2(0

�) = 2-5 A

Figure R.P. 5.15(a) Figure R.P. 5.15(b)

For � � 0+, the circuit diagram is as shown in Fig. 5.15(b). Applying KVL clockwise to the
circuit, we get

80�(�) + 4
��

��
= 0
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Taking Laplace transform, we get

80/(�) + 4[�/(�)� �(0�)] = 0

� 80/(�) + 4�/(�) = 4� 2-5

� [20 + �]/(�) = 2-5

/(�) =
2-5

�+ 20

Taking inverse Laplace transform, we get,

�(�) = 2-5��20�

At � = 0-5 sec, we get

i(0.5) = 2.5e�10 = 1.135� 10�4 A

R.P 5.16

Refer the circuit shown in Fig. R.P. 5.16. Find:

(a) �
(�) for � � 0

(b) �
(�) for � � 0

(c) Does your solution for �
(�) make sense when � = 0? Explain.

Figure R.P. 5.16

SOLUTION

Figure R.P. 5.16(a)
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KCL at node A: (for � � 0)

/�� =
1

.

��
0

�
��+
�

�

+  
��

��

Taking Laplace transform,

/��
�

=
!
(�)

�.
+
!
(�)

�
+ � !
(�)

Hence� !
(�) =

/��
 

�2 +

�
1

� 

�
�+

1

. 

Substituting the values of /��, �, ., and  , we find that

!
(�) =
120� 000

�2 + 10� 000�+ 16� 106
=

120� 000

(�+ 2000)(�+ 8000)

Using partial fractions, we get

!
(�) =
�1

�+ 2000
+

�2

�+ 8000

where �1 = 20, and �2 = �20

Hence� !
(�) =
20

�+ 2000
� 20

�+ 8000

Taking inverse Laplace transform, we get

v�(t) = 20e�2000�u(t)� 20e�8000�u(t)

(b) �
(�) =  
��

��

Hence /
(�) =  [�!
(�)� �
(0)]
For � � 0�, since the switch was in closed state, the circuit was not activated by the source.

This means that �
(0) = �
(0
�) = �
(0

+) = 0 and ��(0+) = ��(0
�) = 0-

Then� /
(�) =  �!
(�)

=
25� 10�9 � �� 120� 000

�2 + 10� 000�+ 16� 106

=
3� 10�3�

(�+ 2000)(�+ 8000)

=
�1

�+ 2000
+

�2

�+ 8000
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We find that, �1 = �10�3, and �2 = 4� 10�3

Therefore� /
(�) =
�10�3

�+ 2000
+

4� 10�3

�+ 8000

Taking inverse Laplace transform, we get

i�(t) = 4e�8000�u(t)� e�2000�u(t)mA

(c) �
(0
+) = 4� 1 = 3mA

Yes. The initial inductor current is zero by hypothesis
�
��(0

+) = /�(0
�) = 0

�
. Also, the initial

resistor current is zero because �
(0+) = �
(0
�) = 0. Thus at � = 0+, the source current

appears in the capacitor.

R.P 5.17

Refer the circuit shown in Fig. R.P. 5.17. The circuit parameters are � = 10kΩ, . = 800 mH
and  = 100nF, if !�� = 70V, find:

(a) �
(�) for � � 0

(b) �
(�) for � � 0

(c) Use initial and final value theorems to check the inital and final values of current and
voltage.

Figure R.P. 5.17

SOLUTION

At � = 0�, switch is open and at � = 0+, the switch is closed. Since at � = 0�, the circuit is not
energized by dc source, �
(0�) = 0 and �
(0�) = 0. Then by the hypothesis, that the current in
an inductor and voltage across a capacitor cannot change instantaneously,

�
(0
+) = �
(0

�) = 0 and �
(0
+) = �
(0

�) = 0
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The KCL equation when the switch is closed (for � � 0+) is given by

 
��

��

+
�

�

+
1

.

��
0

(�
 � !��)�� = 0

�  
��

��

+
�

�

+
1

.

��
0

�
�� =
1

.

��
0

!����

�  
��

��

+
�

�

+
1

.

��
0

�
�� =
1

.
!���

Laplace transform of the above equation gives

 [�!
(�)� �
(0)] + !
(�)

�
+

1

.

!
(�)

�
=

1

.

!��
�2

Since �
(0) is same as �
(0�), we get

 �!
(�) +
!
(�)

�
+

1

.

!
(�)

�
=
!��
.�2

� !
(�) =

!��
. 

�

�
�2 +

1

� 
�+

1

. 

�

Substituting the values of !��, �, ., and  , we get

!
(�) =
875� 106

� [�2 + 1000�+ 1250� 104]

=
875� 106

�(�� �1)(�� �2)
where �1� �2 = �500�

"
25� 104 � 1250� 104

= �500� �3500
Hence� !
(�) =

875� 106

�(�+ 500)� �3500)(�+ 500 + �3500)

Using partial fractions, we get

!
(�) =
�1

�
+

�2

�+ 500� �3500 +
��

2

�+ 500 + �3500

We find that �1 =
875� 106

125� 105
= 70

�2 =
875� 106

(�500 + �3500)(�7000)
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= 5

50 /171-87�

!
(�) =
70

�
+

5

50 /171-87�

�+ 500� �3500 +
5

50 /�171-87�

s + 500 + �3500

Taking inverse Laplace transform, we get

�
(�) =
�
70 + 5


50 /171-87� ��(500��3500)� + 5


50 /�171-87� ��(500+�3500)�

�
�(�)

The inverse of !
(�) can be expressed in a better form by following the technique described
below:

Let us consider a transformed function

� (�) =
 + ��

�+ �� �	 +
 � ��

�+ �+ �	

=
) /�

�+ �� �	 +
) /��

�+ �+ �	

where ) =
"
,2 + �2 and � = tan�1


�

,

�

The inverse transform of � (�) is given by

�(�) = 2)���� cos(	�+ �)�(�)

(For the proof see R.P. 5.19)

In the present context,

) = 5

50� � = 171-87�

	 = 3500 and � = 500

This means that, �
�1

#
5

50 /171-87�

�+ 500� �3500 +
5

50 /�171-87�

�+ 500 + �3500

$

= 2� 5

50��500� cos (3500�+ 171-87�)

= 10

50��500� cos (3500�+ 171-87�)

Hence� v�(t) =
	
70 + 10

�
50e�500� cos (3500t+ 171.87�)



u(t)
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(b) �
(�) =
�

�

+  
��

��

Taking Laplace transforms on both the sides, we get

/
(�) =
!
(�)

�
+  

	
�!
(�)� �
(0�)



� /
(�) =

!
(�)

�
+  �!
(�)

� /
(�) =  !
(�)


�+

1

� 

�

=

�
!��
.

����� �+
1

� 

�

�
�2 +

1

� 
�+

1

. 

�
�
���

Substituting the values of !��, �, ., and  , we get

/
(�) =
87-5(�+ 1000)

�(�+ 500� �3500)(�+ 500 + �3500)

=
�1

�
+

�2

�+ 500� �3500 +
��

2

�+ 500 + �3500

We find that,

�1 =
87-5� 1000

1250� 104
= 7mA

�2 =
87-5(500 + �3500)

(�500 + �3500)(�7000)
= 12-5 /�106-26� mA

/
(�) =
7

�
+

12-5 /�106-26�
�+ 500� �3500 +

12-5 /106-26�

�+ 500 + �3500

The inverse Laplace transform yields,

�
(�) =
�
7 + 12-5 /�106-26� ��(500��3500)� + 12-5 /106-26� ��(500+�3500)�

�
�(�)

=
	
7 + 25e�500� cos(3500t� 106.26�)



u(t)mA

(c) !
(�) =

!��
. 

�

�
�2 +

�
1

� 

�
�+

1

. 

�

From Final Value theorem: �
(�) = lim
���

�
(�) = lim
��0

�!
(�) =
!�� � . 
. 

= 70V

The same result may be obtained by putting � =� in the expression for �
(�).
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From initial value theorem : �
(0) = lim
���

�!
(�)

= lim
���

�� !��
. 

��
�
�2 +

1

� 
�+

1

. 

�
= 0

This verifies our beginning analysis that �
(0+) = �
(0
�) = 0. The same result may be

obtained by putting � = 0 in the expression for �
(�).

We know that, /
(�) =
!��
.

�
�+

1

� 

�

�

�
�2 +

1

� 
�+

1

. 

�

From final value theorem : /
(�) = lim
��0

�/
(�)

= lim
��0

��!��
.

�
�+

1

� 

�

��
�
�2 +

1

� 
�+

1

. 

�

=
!��
.

1

� 
1

. 

=
!��
�

=
70

10� 103
= 7 mA

The same result may be obtained by putting � =� in the expression for �
(�).

From initial value theorem : �
(0) = lim
���

�/
(�)

= lim
���

�

�
���!��.

�
�+

1

� 

�

�

�
�2 +

1

� 
�+

1

. 

�
�
���

= 0

This agrees with our initial analysis that the initial current through the inductor is zero. The
same result can be obtained by putting � = 0 in the expression for �
(�).
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R.P 5.18

Apply the initial and final value theorems to each of the functions given below:

(a) � (�) =
�2 + 5�+ 10

�+ 6
(b) � (�) =

�2 + 5�+ 10

5(�2 + 6�+ 8)

SOLUTION

Since in � (�) referred in (a) and (b) are improper 1 fractions, the corresponding time domain
counterparts, �(�) contain impulses.

Thus, neither the initial value theorem nor the final value theorems may be applied to these
transformed functions.

R.P 5.19

Find the inverse Laplace transform of � (�) =
,+ ��

�+ �� �	 +
,� ��

�+ �+ �	

SOLUTION

Expressing ,+ �� and ,� �� in the exponenetial from, we get,

� (�) =
)���

�+ �� �	 +
)����

�+ �+ �	

where ) =
"
,2 + �2 and � = tan�1


�

,

�
Hence� �(�) = �

�1 �� (�)�
=)�����(����)��(�) +)������(�+��)��(�)

=)������(�+��)�(�) +)�������(�+��)�(�)

= 2)����
�
��(�+��) + ���(�+��)

2

�
�(�)

= 2me��� cos(θ + ωt)u(t)

R.P 5.20

Find the initial and final values of �(�) when � (�) =
60

�2 � 2�+ 1

SOLUTION

Initial value theorem

�(0) = lim
���

�� (�)

= lim
���

�
60

�2 � 2�+ 1
= 0

1If the degree of the numerator polynomial is greater than or equal to the degree of the denominator polynomial,
the fraction is said to be improper.
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Final value theorem:
The poles of � (�) are given by finding the roots of the denominator polynomial. That is,

�2 � 2�+ 1 = 0 � (�� 1)2 = 0 � � = 1� 1

Since both the poles of � (�) lie to the right of the � plane, final value theorem cannot be used
to find �(�).

R.P 5.21

Find �(�) for the circuit of Fig.R.P. 5.21, when �1(�) = 7��6� A for � � 0 and �(0) = 0. Also find
�(�).

Figure R.P. 5.21

SOLUTION

Figure R.P. 5.21(a)

Refer Fig. R.P. 5.21(a).

KCL at node �1:
�1
5

+ � = 7��6�

Also� �1 = 3�+ 4
��

��

Hence�
1

5


3�+ 4

��

��

�
+ � = 7��6�

� 4

5

��

��
+

8

5
� = 7��6�

� ��

��
+ 2� =

35

4
��6�

Taking Laplace transform of the differential equation, we get

[�/(�)� �(0)] + 2/(�) =
35

4

1

�+ 6

� /(�) =
35

4

1

(�+ 2)(�+ 6)
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Using partial fraction expansion, we get

/(�) =
�1

�+ 2
+

�2

�+ 6

and find that �1 =
35

16
and�2 =

�35
16

Hence� /(�) =
35

16


1

�+ 2

�
� 35

16


1

�+ 6

�

� i(t) =
35

16

	
e�2� � e�6�
u(t)

5.7 Circuit element models and initial conditions

In the analysis of a circuit, the Laplace transform can be carried one step further by transforming
the circuit itself rather than the differential equation. Earlier we have seen how to represent a
circuit in time domain by differential equations and then use Laplace transform to transform the
differential equations into algebraic equations. In this section, we will see how we can represent
a circuit in � domain using the Laplace transform and then analyze it using algebraic equations.

5.7.1 Resistor

The voltage-current relationship for a resistor � is given by Ohm’s law:

�(�) = �(�)� (5.22)

Taking Laplace transform on both the sides, we get

! (�) = /(�)� (5.23)

Fig. 5.19 (a) shows the representation of a resistor in time domain and Fig. 5.19(b) in fre-
quency domain using Laplace transform.

Figure 5.19(a) Resistor represented in Figure 5.19(b) Resistor represented in the

time domain frequency domain using Laplace transform

The impedance of an element is defined as

0(�) =
! (�)

/(�)
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provided all initial conditions are zero. Please note that the impedance is a concept defined only
in frequency domain and not in time domain. In the case of a resistor, there is no initial condition
to be set to zero. Comparision of equations (5.22) and (5.23) reveals that, resistor � has same
representation in both time and frequency domains.

5.7.2 Capacitor

For a capacitor with capacitance  , the time-domain voltage-current relationship is

�(�) =
1

 

��
0

�(� )�� + �(0) (5.24a)

The � domain characterization is obtained by taking the Laplace transform of the above equa-
tion. That is,

! (�) =
1

 �
/(�) +

�(0)

�
(5.24b)

To find the impedance of a capacitor, set the initial condition �(0) to zero. Then from equation

(5.24b), we get 0(�) =
! (�)

/(�)
=

1

 �
as the impedance of the capacitor. With the help of equation

(5.24b), we can draw the frequency domain representation of a Capacitor and the same is shown
in Fig. 5.20(b). This equivalent circuit is drawn so that the KVL equation represented by equation
(5.24 b) is satisfied. Performing source transformation on the equivalent � domain circuit for a
capacitor which is shown in Fig. 5.20(b), we get an alternate frequency domain representation as
shown in Fig. 5.20(c).

Figure 5.20(a) A capacitor represented in time domain

(b) A capacitor represented in the frequency domain

(c) Alternate frequency domain representation for a capacitor
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5.7.3 Inductor

For an inductor with inductance ., the time domain voltage-current relation is

�(�) = .
��(�)

��
(5.25)

The Laplace transform of equation (5.25) yields,

! (�) = .�/(�)� .�(0) (5.26)

To find impedance of an inductor, set the initial condition �(0) to zero. Then from equation
(5.26), we get

0(�) =
! (�)

/(�)
= .� (5.27)

which represents the impedance of the inductor. Equation (5.26) is used to get the frequency
domain representation of an inductor and the same is shown in Fig. 5.21(b). The series connection
of elements corresponds to sum of the voltages in equation (5.26). Converting the voltage source
in Fig.5.21(b) into an equivalent current source, we get an alternate representation for the inductor
in frequency domain which is as shown in Fig. 5.21(c).

To find the frequency domain representation of a circuit, we replace the time domain repre-
sentation of each element in the circuit by its frequency domain representation.

Figure 5.21(a) An inductor represented in time domain
(b) An inductor represented in the frequency domain
(c) An alternate frequency domain representation

To find the complete response of a circuit, we first get its frequency domain representation.
Next, using �! . or � ., we find the variables of interest in � doamin. Finally, we use the
inverse Laplace transform to represent the variables of interest in time domain.
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EXAMPLE 5.16
Determine the voltage ��(�) and the current ��(�) for � � 0 for the circuit shown in Fig. 5.22.

�

�

Figure 5.22

SOLUTION

We shall analyze this circuit using nodal technique. Hence we represent the capacitor in frequency
domain by a parallel circuit since it is easier to account for current sources than voltage sources
while handling nodal equations.

The symbol for switch indicates that at � = 0� it is closed and at � = 0+, it is open. The
circuit at � = 0� is shown in Fig. 5.23(a). Let us assume that at � = 0�, the circuit is in steady
state. Under steady state condition, capacitor acts as on open circuit as shown in Fig. 5.23(a).

Figure 5.23(a)

Figure 5.23(b)

�1(0
�) =

2� 6

6 + 3
=

12

9
=

4

3

��(0
�) =

4

3
� 3 = 4V

Hence� ��(0) = ��(0
+) = ��(0

�) = 4V

Fig. 5.23(b) represents the frequency
domain representation of the circuit
shown in Fig. 5.22.

KCL at top node:

!�(�)

3
+
�

2
!�(�) = 2 +

2

�

� !�(�) =
6

�
� 2

�+
2

3
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Inverse Laplace transform yields

v�(t) =
�
6� 2e�

2
3 �
�
u(t)V

Also� /�(�) =
!�(�)
2

�

� 2 =

2

3

�+
2

3

� i�(t) =
2

3
e�

2
3 �u(t)A

EXAMPLE 5.17
Determine the current ��(�) for � � 0 for the circuit shown in Fig. 5.24.

Figure 5.24

SOLUTION

At � = 0�, switch is closed and at � = 0+, it is open. Let
us assume that at � = 0�, the circuit is in steady state. In
steady state, capacitor is open and inductor is short. The
equivalent circuit at � = 0� is as shown in Fig. 5.25(a).

��(0
�) =

12

8 + 4
= 1A

��(0
�) = 1� 8 = 8V

Therefore� ��(0) = ��(0
+) = ��(0

�) = 1A

��(0) = ��(0
+) = ��(0

�) = 8V Figure 5.25(a)

For � � 0+, the circuit in frequency domain is as shown in Fig. 5.25(b). We will use KVL
to find ��(�). Hence, we use series circuits to represent both the capacitor and inductor in the
frequency domain. These series circuits contain voltage sources rather than current sources. It
is easier to account for voltage sources than current sources when writing mesh equations. This
justifies the selection of series representation for both the capacitor and inductor.
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Figure 5.25(b)

Applying KVL clockwise to the right
mesh, we get

�8
�

+
20

�
/�(�) + 4�/�(�)�4+8/�(�)=0

� 8

�
+ 4 =


20

�
+ 8 + 4�

�
/�(�)

� /�(�) =
2 + �

�2 + 2�+ 5
=

(�+ 1) + 1

(�+ 1)2 + 4

� /�(�) =
�+ 1

(�+ 1)2 + 22
+

1

2


2

(�+ 1)2 � 22

�

We know the Laplace transform pairs:

�
�
���� cos ��

�
=

�+ �

(�+ �)2 + �2

and �
�
���� sin ��

�
=

�

(�+ �)2 + �2

Hence� i�(t) =


e�� cos 2t+

1

2
e�� sin 2t

�
u(t)A

EXAMPLE 5.18
Find �
(�) of the circuit shown in Fig. 5.26.

Figure 5.26

SOLUTION

Figure 5.27(a)

The unit step function �(�) is defined as
follows:

�(�) =

�
1� � � 0+

0� � � 0�
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Since the circuit has two independent sources with �(�) associated with them, the circuit is not
energized for � � 0�. Hence the initial current through the inductor is zero. That is, ��(0�) = 0.
Since current through an inductor cannot change instantaneously,

��(0) = ��(0
+) = ��(0

�) = 0

Also� ��(0) = ��(0
+) = ��(0

�) = 0

The equivalent circuit for � � 0+ in frequency domain is as shown in Fig. 5.27(b).

Figure 5.27(b)

KCL at supernode:

!1(�)

1 +
1

�

+
!2(�)

�
+
!2(�)

2
=

2

�

� !1(�)

�
�� 1

1 +
1

�

�
��+ !2(�)


1

�
+

1

2

�
=

2

�

� !1(�)


�

�+ 1

�
+ !2(�)


2 + �

2�

�
=

2

�

The constraint equation:

Applying KVL to the path comprising of current source � voltage source � inductor,

we get, � !1(�)� 1

�+ 2
+ !2(�) = 0

!2(�)� !1(�) = 1

�+ 2

� !1(�)� !2(�) = � 1

�+ 2
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Putting the above two equations in matrix form, we get�
��

�

�+ 1

2 + �

2�

1 �1

�
��
�
� !1(�)

!2(�)

�
� =

�
���

2

�
�1
�+ 2

�
���

Solving for !2(�) and then applying the principle of voltage division, we get

!
(�) =
1

2
!2(�) =

2(3�2 + 6�+ 4)

2(�+ 2)(3�2 + 3�+ 2)

� !
(�) =

�
�2 + 2�+

4

3

�
(�+ 2)(�+ 0-5� �0-646)(�+ 0-5 + �0-646)

Using partial fractions, we can write

!
(�) =
�1

�+ 2
+

�2

�+ 0-5� �0-646 +
��

2

�+ 0-5 + �0-646
We find that �1 = 0-5

�2 = 0-316 /�37-76
Hence� !
(�) =

0-5

�+ 2
+

0-316 /�37-76
�+ 0-5� �0-646 +

0-316 /37-76

�+ 0-5 + �0-646

We know that, �
�1


1

�+ �

�
= �����(�)

�
�1


) /�

�+ �� �	 +
) /��

�+ �+ �	

�
= 2)���� cos(	�+ �)�(�)

Hence, v�(t) = 0.5e�2�u(t) + 0.632e�0�5� cos [0.646t� 37.76�]u(t)

EXAMPLE 5.19
For the network shown in Fig. 5.28, find �
(�), � � 0, using mesh equations.

Figure 5.28
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SOLUTION

The step function �(�) is defined as follows.

�(�) =

�
1� � � 0+

0� � � 0�

Since the circuit is not energized for � � 0�, there
are no initial conditions in the circuit. For � � 0+,
the frequency domain equivalent circuit is shown
in Fig. 5.29(b).

Figure 5.29(a)

Figure 5.29(b)

By inspection, we find that /1(�) =
2

�
KVL clockwise for mesh 2:

�4
�

+ 1 [/2(�)� /1(�)] + 2/2(�) + 1 [/2(�)� /3(�)] = 0

� �4
�
� /1(�) + /2(�) [1 + 2 + 1]� /3(�) = 0

Substituting the value of /1(�), we get

�4
�

+ 4/2(�)� /3(�) = 2

�

� 4/2(�)� /3(�) = 6

�

KVL clockwise for mesh 3:

1 [/3(�)� /2(�)] + �/3(�) + 1/3(�) = 0

� � /2(�) + /3(�) [�+ 2] = 0

Putting the KVL equations for mesh 2 and mesh 3 in matrix form, we get�
� 4 �1

�1 �+ 2

�
�
�
� /2(�)

/3(�)

�
� =

�
� 6

�

0

�
�
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Solving for /3(�), using Cramer’s rule, we get

/3(�) =
1-5

�

�
�+

7

4

�

� !
(�) = /3(�)� 1 =
1-5

�

�
�+

7

4

�
Using partial fractions, we can write

!
(�) =
�1

�
+

�2

�+
7

4

We find that, �1 =
6

7
� and�2 =

�6
7

Hence� !
(�) =
6

7

�
��1
�
� 1

�+
7

4

�
��

� v�(t) =
6

7

�
1� e�

7
4 �
�
u(t)

EXAMPLE 5.20
Use mesh analysis to find �
(�), � � 0 in the network shown in Fig. 5.30.

Figure 5.30

SOLUTION

The circuit is not energized for � � 0� because the independent current source is associated with
�(�). This means that there are no initial conditions in the circuit. The frequency domain circuit
for � � 0+ is shown in Fig. 5.31.

By inspection we find that:

/1(�) =
4

�
� /2(�) =

/�(�)

2

/�(�) = /3(�)� 4

�
� 2/2(�) = /3(�)� 4

�
� /2(�) =

1

2


/3(�)� 4

�

�
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Figure 5.31

KVL for mesh 3 gives

� [/3(�)� /2(�)] + 1


/3(�)� 4

�

�
+1� /3(�) = 0

� �


/3(�)� 1

2

�
/3(�)� 4

�

��

+


/3(�)� 4

�

�
+ /3(�) = 0

� /3(�) =
�4(�� 2)

�(�+ 4)

and !
(�) = 1[/3(�)]

=
�4(�� 2)

�(�+ 4)

By partial fractions, we can write

!
(�) =
�1

�
+

�2

�+ 4
We find that �1 = 2� �2 = �6
Hence� !
(�) =

2

�
� 6

�+ 4

Taking inverse Laplace transform, we get

v�(t) = 2u(t)� 6e�4�u(t)

EXAMPLE 5.21
Using the principle of superposition, find �
(�) for � � 0. Refer the circuit shown in Fig. 5.32.

Figure 5.32

SOLUTION

Since both the independent sources are associated with �(�), which is zero for
� � 0�, the circuit will not have any initial conditions. The frequency domain circuit for � � 0+

is shown in Fig. 5.33(a).
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Figure 5.33(a)

As a first step, let us find the contribution to !
(�) due to voltage source alone. This needs the
deactivation of the current source.

Figure 5.33(b)

Figure 5.33(c)

Referring to Fig. 5.33(b), we find that

/(�) =

4

�

�+ 1 +
2

�
+ 1

� !
1(�) = /(�)[1] =
4

�2 + 2�+ 2

Next let us find the contribution to the output due to
current source alone.
Refer to Fig. 5.33(c). Using the principle of current
division,

/1(�) =

2

�
� �

�+ 1 +
2

�
+ 1

� !
2(�) = 1 [/1(�)] =
2�

�2 + 2�+ 2

Finally adding the two contributions, we get

!
(�) = !
1(�) + !
2(�)

=
4

�2 + 2�+ 2
+

2�

�2 + 2�+ 2
=

2�+ 4

�2 + 2�+ 2

=
�1

�+ 1� �1 +
��

1

�+ 1 + �1

We find that, �1 =

2 /�45�

Hence� !
(�) =


2 /�45�

�+ 1� �1 +


2 /+45�

�+ 1 + �1
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We know that: �
�1
�

) /�

�+ �� �� +
) /��
�+ �+ ��

�
= 2)���� cos(��+ �)�(�)

Hence� v�(t) = 2
�
2e�� cos(t+ 45�)u(t)

EXAMPLE 5.22

(a) Convert the circuit in Fig. 5.34 to an appropriate � domain representation.

(b) Find the Thevein equivalent seen by 1Ω resistor.

(c) Analyze the simplified circuit to find an expression for �(�).

Figure 5.34

SOLUTION

(a) Since the independent current source has �(�) in it, the circuit is not activated for � � 0�. In
otherwords, all the initial conditions are zero. Fig.5.35 (a) shows the � domain equivalent
circuit for � � 0+.

Figure 5.35(a)

(b) Sine we are interested in the current in 1Ω using the Thevenin theorem, remove the 1Ω
resistor from the circuit shown in Fig. 5.35(a). The resulting circuit thus obtained is shown
in Fig. 5.35(b).
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Figure 5.35(b)

Figure 5.35(c)

0�(�) is found by deactivating the independent
current source.

0�(�) = (5 + 0-001�)		500
�

=
2500 + 0-5�

0-001�2 + 5�+ 500
Ω

Referring to Fig. 5.35 (b),

!�(�) =
3

�
[0�(�)]

=
7-5� 106 + 1500�

�(�2 + 5000�+ 5� 105)
Volts

The Thevenin equivalent circuit along with 1Ω
resistor is shown in Fig. 5.35 (c).

/(�) =
!�(�)

0�(�) + 1

=
7-5� 106 + 1500�

�(�2 + 5500�+ 3� 106)

=
7-5� 106 + 1500�

�(�+ 4886)(�+ 614)

Using partial fractions, we get

/(�) =
2-5

�
+

0-008

�+ 4886
� 2-508

�+ 614

Taking inverse Laplace transforms, we get

i(t) =
�
2.5 + 0.008e�4886� � 2.508e�614�

�
u(t)A

Check:

�(0) = 2-5 + 0-008 � 2-508 = 0

and �(�) = 2-5-

These could be verified by evaluating �(�) at � = 0 and � = � using the concepts explained in
Chapter 4.

EXAMPLE 5.23
Refer the RLC circuit shown in Fig. 5.36. Find the complete response for �(�) if � � 0+. Take
�(0) = 2V.
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Figure 5.36

SOLUTION

Since we wish to analyze the circuit given in Fig. 5.36 using KVL, we shall represent . and  in
frequency domain using series circuits to accomodate the initial conditions. Accordingly, we get
the frequency domain circuit shown in Fig. 5.36 (a).

Applying KVL clockwise to the circuit shown in Fig. 5.36 (a), we get

Figure 5.36(a)

�2�
�2 + 16

+

�
6 + �+

9

�

�
/(�) +

2

�
= 0

� /(�) =
�32

(�2 + 6�+ 9)(�2 + 16)

Hence� ! (�) = /(�)


9

�

�
+

2

�

=
2

�
+

�288
�(�+ 3)2(�2 + 16)

Using partial fraction, we get

! (�) =
2

�
+


�1

�
+

�2

�+ 3
+

�3

(�+ 3)2
+

�4

�� �4 +
��

4

�+ �4

�

Solving for �1, �2, �3, and �4, we get

�1 =
�288

(�+ 3)2(�2 + 16)

����
�=0

= �2

�2 =
�

��

 �288
�(�2 + 16)

�
�=�3

= 2-2

�3 =
�288

�(�2 + 16)

����
�=�3

= 3-84

�4 =
�288

�(�+ 3)2(�+ �4)

����
�=�4

= 0-36 /�106-2
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Therefore

! (�) =
2

�
� 2

�
+

2-2

�+ 3
+

3-84

(�+ 3)2
+

0-36 /�106-2
�� �4 +

0-36 /106-2

�+ �4

Taking inverse Laplace Transform we get,

v(t) = 2.2e�3� + 3.84te�3� + 0.72 cos(4t� 106.2�)

Verification:
Putting � = 0 in the above equation

�(0) = 2-2 + 0 + 0-72 cos(�106-2�)
= 2-2� 0-2 = 2V

(The same quantity is given in the problem)

5.8 Waveform synthesis

The three important singularity functions explained in section 5.3 are very useful as building
blocks in constructing other waveforms. In this section, we illustrate the concept of waveform
synthesis with a number of exmaples, and also determine expressions for these waveforms.

EXAMPLE 5.24
Express the voltage pulse shown in Fig.5.37 in terms of unit step function and then find ! (�).

Also find �
�
��(�)

��

�
.

Figure 5.37

SOLUTION

The pulse shown in Fig. 5.37 is the gate function. This function may be regarded as a step function
that switches on at � = 2 secs and switches off at � = 4 secs.
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Figure 5.37(a)

Figure 5.37(b)

Referring to Figs. 5.37 and 5.37 (a), we can write

�(�) = �1(�) + �2(�)

� �(�) = 5�(�� 2)� 5�(�� 4)

Hence� ! (�) =
5

�
��2� � 5

�
��4�

=
5

s

	
e�2� � e�4�


Taking the derivative of �(�), we get

��(�)

��
= 5 [
(�� 2)� 
(�� 4)]

Fig. 5.37(b) shows the graph of
��(�)

��
.

We can obtain Fig. 5.37(b) directly from Fig. 5.36 by observing that at � = 2 seconds, there is
a sudden rise of 5V leading to 5
(�� 2). Similarly, at � = 4 seconds, a sudden fall of 5V leading
to �5
(�� 4).

We know the Laplace trasnform pair

��
(�� �)� = ���� ��
(�)�
= ����

Hence� �

�
dv(t)

dt

�
= 5

	
e�2� � e�4�
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EXAMPLE 5.25
Express the current pulse in Fig.5.38 in terms of the unit step.

Find: (i) � ��(�)� (ii) �
�%
�(�)��

�
.

Figure 5.38

SOLUTION

Figure 5.39(a)

Figure 5.39(b)

Referring to Figs. 5.39 (a) and (b), using the principle of synthesis, we can write

�(�) = �1(�) + �2(�) + �3(�)

= 5�(�)� 10�(�� 2) + 5�(�� 4)
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The Laplace transform of the above equation yields

/(�) =
5

�
� 10

�
��2� +

5

�
��4�

=
5

�

	
1� 2��2� + ��4�



=

5

s

	
1� e�2�
2

Let �(�) =

�
�(�)��

then� �(�) =

�
[5�(�)� 10�(�� 2) + 5�(�� 4)]��

= 5�(�)� 10�(�� 2) + 5�(�� 4)

= �1(�) + �2(�) + �3(�)

The function �1(�) is a ramp of slope = 5 as shown in Fig. 5.39 (c). To this, if we add a ramp
of slope = �10, the effect of this addition is, we get a ramp of slope = 5 �10 = �5 for � � 2 secs
till we encounter the next ramp. At � = 4 seconds, if we add a ramp with a slope of +5, the net
slope beyond � = 4 seconds is �5 + 5 = 0. Thus figure �(�) is drawn as shown in Fig. 5.39 (d).

Figure 5.39(c)

� ��(�)� = � (�)

= � �5�(�)� 10�(�� 2) + 5�(�� 4)�
=

5

�2
� 10

�2
��2� +

5

�2
��4�

=
5

s2
	
1� 2e�2� + e�4�




400 � Network Theory

Figure 5.39(d)

EXAMPLE 5.26
Express the sawtooth function in terms of singularity functions. Then find ���(�)�.

Figure 5.40

SOLUTION

There are three methods to solve this problem.

Method 1:
The function �1(�) is a ramp function of slope = +5. This slope +5 should continue till � = 1
second. Hence at � = 1 second, a ramp of slope � = �5 is added to �1(�). The graph of
�1(�) + �2(�) is shown in Fig. 5.41(a). Next, to �1(�) + �2(�), a step of �5V is added at � = 1
second.
Hence� �(�) = �1(�) + �2(�) + �3(�)

= 5�(�)� 5�(�� 1)� 5�(�� 1)

! (�) = ���(�)� = 5

�2
� 5

�2
��� � 5

�
���

=
5

�2
	
1� ��� � ����
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Figure 5.41(a)

Figure 5.41(b)

Method 2:

This method involves graphical manipulation.

Figure 5.41(c)



402 � Network Theory

The equation of a straight line passing through the origin is � = ), where ) = slope of the
line. This allows us to write �1(�) = 5�. From Fig. 5.41(c), we can write

�(�) = �1(�)�2(�)

= 5� [�(�)� �(�� 1)]

= 5��(�)� 5��(�� 1)

= 5��(�)� 5(�� 1 + 1)�(�� 1)

= 5��(�)� 5(�� 1)�(�� 1)� 5�(�� 1)

= 5�(�)� 5�(�� 1)� 5�(�� 1)

Hence� V (s) =
5

s2
	
1� e�� � se��



Method 3:

Figure 5.41(d)

This method also involves graphical manipulation. We observe from Fig. 5.41(d) that �(�) is a
multiplication of a ramp function and a unit step function.

Thus� �(�) = �1(�)�2(�)

= 5�(�) [�(��+ 1)]

Figure 5.41(e)
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From Fig. 5.41(e), we can write

�2(�) = �3(�) + �4(�)

� �2(�) = 1� �(�� 1)

� �(��+ 1) = 1� �(�� 1)

Hence� �(�) = 5�(�) [1� �(�� 1)]

= 5�(�)� 5�(�)�(�� 1)

We know that, �(�) = ��(�)

Hence� �(�) = 5�(�)� 5��(�)�(�� 1)

= 5�(�)� 5(�� 1 + 1)�(�)�(�� 1)

= 5�(�)� 5(�� 1)�(�)�(�� 1)� 5�(�)�(�� 1)

Please note that, �(�)�(�� 1) = �(�� 1) [Refer Fig. 5.41(f)]

Figure 5.41(f)

Thus� �(�) = 5�(�)� 5(�� 1)�(�� 1)� 5�(�� 1)

= 5�(�)� 5�(�� 1)� 5�(�� 1)

Hence� V (s) =
5

s2
	
1� e�� � se��
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Given the signal

(�) =

��
�

3� � � 0
�2� 0 � � � 1

2�� 4� � � 1

Express (�) in terms of singularity functions. Also find ��(�)�.

SOLUTION

The signal (�) may be viewed as follows:

(i) in the interval, � � 0, (�) may be regarded as 3�(��)
(ii) in the interval, 0 � � � 1, (�) may be viewed as �2[�(�)� �(�� 1)] and

(iii) for � � 1, (�) may be viewed as (2�� 4)�(�� 1)



404 � Network Theory

Thus� (�) = 3�(��)� 2 [�(�)� �(�� 1)] + (2�� 4)�(�� 1)

� (�) = 3 [1� �(�)]� 2�(�) + 2�(�� 1) + 2��(�� 1)� 4�(�� 1)

= 3� 5�(�)� 2�(�� 1) + 2(�� 1 + 1)�(�� 1)

= 3� 5�(�)� 2�(�� 1) + 2(�� 1)�(�� 1) + 2�(�� 1)

= 3� 5u(t) + 2r(t� 1)

��(�)� cannot be found because (�) contains a constant 3 for �� � � � 0 (a noncausal
signal).

EXAMPLE 5.28
Express �(�) in terms of singularity functions and then find � (�).

Figure 5.42

SOLUTION

To find �(�) for 0 � � � 2 :
Equation of the straight line 1 is

� � �1
� 1 =

�2 � �1
2 � 1

Here, � is �(�) and  is �.
Hence,

� (�)� 3

�� 0
=
�3� 3

2� 0
� 2�(�)� 6 = �6�
� �(�) = 3� 3�

Figure 5.43
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To find �(�) for 2 � � � 3:
Here,

� (�) + 3

�� 2
=

0 + 3

3� 2

� �(�) + 3 = 3�� 6

� �(�) = 3�� 9

Hence

� (�) =

��
�

3� 3�� 0 � � � 2
3�� 9� 2 � � � 3

0� otherwise

The above equation may also be written as :

� (�) = [3� 3�] [� (�)� � (�� 2)] + [3�� 9] [� (�� 2)� � (�� 3)]

= 3� (�)� 3� (�� 2)� 3�� (�) + 3�� (�� 2) + 3�� (�� 2)

�3�� (�� 3)� 9� (�� 2) + 9� (�� 3)

� � (�) = 3� (�)� 12� (�� 2)� 3�� (�) + 6�� (�� 2)� 3�� (�� 3) + 9� (�� 3)

= 3� (�)� 12� (�� 2)� 3�� (�) + 6 (�� 2 + 2)� (�� 2)

�3 (�� 3 + 3)� (�� 3) + 9� (�� 3)

= 3� (�)� 12� (�� 2)� 3�� (�) + 6 (�� 2)� (�� 2)

+12� (�� 2)� 3 (�� 3)� (�� 3)� 9� (�� 3) + 9� (�� 3)

f(t) = 3u (t)� 3tu (t) + 6 (t� 2)u (t� 2)� 3 (t� 3)u (t� 3)

Hence� � (�) = � �� (�)�
=

3

s
� 3

s2
+

6

s2
e�2� � 3

s2
e�3�

EXAMPLE 5.29
Express the function �(�) shown in Fig. 5.44 using singularity functions and then find � (�).

Figure 5.44



406 � Network Theory

SOLUTION

Equation of the straight line shown in Fig. 5.45(a) is

Figure 5.45(a)

�1 (�) + 1

�� 1
=
�2 + 1

2� 1
� �1 (�) + 1 = ��+ 1

� �1 (�) = ��

The above equation is for the values � lying between 1 and 2.
This could be expressed, by writing

� (�) = �1 (�) & (�)

Figure 5.45(b)

� � (�) = �� [� (�� 1)� � (�� 2)]

= � (�� 1 + 1)� (�� 1) + (�� 2 + 2)� (�� 2)

= � (�� 1)� (�� 1)� � (�� 1) + (�� 2)� (�� 2) + 2� (�� 2)

= �� (�� 1)� � (�� 1) + � (�� 2) + 2� (�� 2)

Hence� � (�) = � �� (�)�
= � 1

s2
e�� � 1

s
e�� +

1

s2
e�2� +

2

s
e�2�
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EXAMPLE 5.30
Find the Laplace transform of the function �(�) shown in Fig. 5.46.

Figure 5.46

SOLUTION

Method 1:

Figure 5.47(a)

We can write� � (�) = � (�) + �� (�)

= sin��� (�) + sin� (�� 1)� (�� 1)

Hence� � (�) = � �� (�)� = �

�2 + �2
+

�

�2 + �2
���

=
π

s2 + π2

	
1 + e��
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Method 2 :

Figure 5.47(b)

Graphically, we can manipulate �(�) as

� (�) = �C (�) & (�)

= sin�� [� (�)� � (�� 1)]

= sin��� (�)� sin��� (�� 1)

= sin��� (�)� sin�� (�� 1 + 1) [� (�� 1)]

= sin��� (�)� sin (� (�� 1) + �)� (�� 1)

= sin��� (�) + sin� (�� 1)� (�� 1)

Hence� � (�) = � �� (�)� = �

�2 + �2
+

�

�2 + �2
���

=
π

s2 + π2

	
1 + e��



EXAMPLE 5.31

Find the Laplace transform of the signal (�) shown in Fig. 5.48.

Figure 5.48
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SOLUTION

Figure 5.49

Mathematically, we can write (�) as

 (�) =  (�)� � (�)

= sin� (�� 1)� (�� 1)� sin� (�� 3)� (�� 3)

Hence� � � (�)� =� (�) =
�

�2 + �2
��� � �

�2 + �2
��3�

=
π

s2 + π2

	
e�� � e�3�


EXAMPLE 5.32

Refer the waveform shown in Fig. 5.50. The equation for the waveform is sin � from 0 to ��� sin �

from � to 2�. Show that the Lapalce transform of this waveform is � (�) =
1

�2 + 1
coth

���
2

�
-

Figure 5.50
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SOLUTION

�(�) is a periodic waveform with a period % = � seconds. Let �1(�) be the waveform �(�)
described over only one period. The Laplace transform of �(�) and �1(�) are related as

� (�) =
�1 (�)

1� ����
Let us now proceed to find �1(�). From Fig. 5.51 (b), we can write

Figure 5.51(a)

Figure 5.51(b)

�1 (�) = � (�) + �� (�)

= sin �� (�) + sin (�� �)� (�� �)
� �1 (�) =

1

�2 + 1
+

1

�2 + 1
����

=
(1 + ����)
�2 + 1

Hence� � (�) =
�1 (�)

1� ���� =
�1 (�)

1� ����

� � (�) =
(1 + ����)

(�2 + 1) (1� ����)

=
1

�2 + 1

�����2�
�
	
����2 + �����2



2

�����2�
�
	
����2 � �����2



2

� � (�) =
1

�2 + 1

cosh
���
2

�
sinh

���
2

�
=

1

s2 + 1
coth

�πs
2

�

EXAMPLE 5.33
Find the Laplace transform of the pulse shown in Fig. 5.52.

Figure 5.52
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SOLUTION

We can describe Fig. 5.52 mathematically as

� (�) =

�
!
� 0 � � � 2

�!
�+ 3!
� 2 � � � 3

The expression for �(�) for 2 � � � 3 is obtianed as follows :
Equation of a straight line between two points is given by

� � �1
� 1 =

�2 � �1
2 � 1

In the present context, � = �(�)�  = �� (1� �1) = (2� !
) and (2� �2) = (3� 0)

Hence�
�(�)� !

�� 2

=
0� !

3� 2

� � (�) = �!
�+ 3!


The time domain expression for �(�) between � = 0 and 3 could be written using graphical
manipulation as

� (�) = !
 [� (�)� � (�� 2)] + [�!
�+ 3!
] [� (�� 2)� � (�� 3)]

The first term on the right-side of the above equation defines �(�) for 0 � � � 2 and the
second term on the right-side defines �(�) for 2 � � � 3.

� (�) = !
� (�)� !
� (�� 2)� !
�� (�� 2) + !
�� (�� 3) + 3!
� (�� 2)� 3!
� (�� 3)

= !
� (�)� !
� (�� 2)� !
 (�� 2 + 2)� (�� 2)

+!
 (�� 3 + 3)� (�� 3) + 3!
� (�� 2)� 3!
� (�� 3)

= !
� (�)� !
� (�� 2)� !
 (�� 2)� (�� 2)� 2!
� (�� 2) + !
 (�� 3)� (�� 3)

+3!
� (�� 3) + 3!
� (�� 2)� 3!
� (�� 3)

= !
� (�)� !
 (�� 2)� (�� 2) + !
 (�� 3)� (�� 3)

� � (�) = !
� (�)� !
� (�� 2) + !
� (�� 3)

Hence� � (�) = � �� (�)�
=

V�
s
� V�

s2
e�2� +

V�
s2

e�3�

EXAMPLE 5.34
Consider a staircase waveform which extends to infinity and at � = ��0 jumps to the value �+ 1,
being a superposition of unit step functions. Determine the Laplace transform of this waveform.
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SOLUTION

We can write,

� (�) = � (�) + � (�� �0) + � (�� 2�0) + � � �
� (�) = � �� (�)� = 1

�
+

1

�
���0� +

1

�
��2�0� + � � �

=
1

�

	
1 + ���0� + ��2�0� + � � �


Let ���0� = 

then � (�) =
1

�

	
1 + + 2 + � � �


From Binomial theorem, we have

(1� )�1 = 1 + + 2 + � � �
Hence� � (�) =

1

� (1� )
=

1

s (1� e��0�)

Figure 5.53

EXAMPLE 5.35
(a) Find the Laplace transform of the staircase waveform shown in Fig. 5.54. (b) If this voltage
were applied to an �. series circuit with � = 1Ω and . = 1# , find the current �(�).

Figure 5.54

SOLUTION

(a) We can express mathematically, the voltage waveform shown in Fig. 5.54 as,

� (�) =

�&&&&�
&&&&�

1� 1 � � � 2
2� 2 � � � 3
3� 3 � � � 4
4� 4 � � � 5
0� elsewhere
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or � (�) = [� (�� 1)� � (�� 2)] + 2 [� (�� 2)� � (�� 3)]

+3 [� (�� 3)� � (�� 4)] + 4 [� (�� 4)� � (�� 5)]

= � (�� 1) + � (�� 2) + � (�� 3) + � (�� 4)� 4� (�� 5)

Taking the Laplace transform, we get

V (s) =
1

s

	
e�� + e�2� + e�3� + e�4� � 4e�5�


(b) Assuming all initial conditions to be zero, the time domian circuit shown in Fig. 5.55 gets
transformed to a circuit as shown in Fig. 5.56.

Figure 5.55 Time Domain Circuit Figure 5.56 Frequency Domain Circuit.

From Fig. 5.56, we can write

/ (�) =
! (�)

�+ 1

� / (�) =
1

� (�+ 1)
��� +

1

� (�+ 1)
��2� +

1

� (�+ 1)
��3� +

1

�(�+ 1)
��4� � 4

� (�+ 1)
��5�

� / (�) =

�
1

�
� 1

�+ 1

�
��� +

�
1

�
� 1

�+ 1

�
��2� +

�
1

�
� 1

�+ 1

�
��3�

+

�
1

�
� 1

�+ 1

�
��4� � 4

�
1

�
� 1

�+ 1

�
��5�

�

Taking the inverse Laplace transform, we get

� (�) =
	
� (�)� ���� (�)


����1
+
	
� (�)� ���� (�)


����2
+
	
� (�)� ���� (�)


����3

+
	
� (�)� ���� (�)


����4
� 4

	
� (�)� ���� (�)


����5

� i (t) =
	
1� e�(��1)



u (t� 1) +

	
1� e�(��2)



u (t� 2) +

	
1� e�(��3)



u (t� 3)

+
	
1� e�(��4)



u (t� 4)� 4

	
1� e�(��5)



u (t� 5)
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EXAMPLE 5.36
A voltage pulse of 10 V magnitude and 5 1 sec duration is applied to the � network shown in
Fig. 5.57. Find the current �(�) if � = 10Ω and  = 0-051� .

Figure 5.57

SOLUTION

Figure 5.58(a)

Mathematically, we can express �(�) as follows :
�(�) = �1(�)� �2(�)

= 10�(�)� 10�(�� �0)
Hence� ! (�) = � �� (�)�

=
10

�

	
1� ���0�


Assuming all initial conditions to be zero, the Laplace
transformed network is as shown in Fig. 5.58(b). Figure 5.58(b)

/ (�) =
! (�)

�+
1

 �

=
10
�
1� ���0��

�


�+

1

 �

�
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/ (�) =
10 �

� (� �+ 1)

�
1� ���0��

=
10

�

1

�+
1

� 

�
1� ���0��

=
10

�

�
�� 1

�+
1

� 

� 1

�+
1

� 

���0�

�
��

Taking inverse Laplace transform yields

� (�) =
10

�
�
�t
RC � (�)� 10

�
�
�t
RC � (�)

����
�����0

=
10

�
�
�t
RC � (�)� 10

�
�
�(t�t0)

RC � (�� �0)

i (t) = e
��

0�5�10�6 u (t)� e
�(��5�10�6)

0�5�10�6 u
�
t� 5� 10�6

�
EXAMPLE 5.37

Find the Laplace transform of the waveform shown in Fig. 5.59.

Figure 5.59

SOLUTION

� (�) =

�
3�� 0 � � � 1
2� 1 � � � 2

or � (�) = 3� [� (�)� � (�� 1)] + 2 [� (�� 1)� � (�� 2)]

= 3�� (�)� 3�� (�� 1) + 2� (�� 1)� 2� (�� 2)

= 3�� (�)� 3 (�� 1 + 1)� (�� 1) + 2� (�� 1)� 2� (�� 2)

= 3�� (�)� 3 (�� 1)� (�� 1)� 3� (�� 1) + 2� (�� 1)� 2� (�� 2)
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� (�) = 3�� (�)� 3 (�� 1)� (�� 1)� � (�� 1)� 2� (�� 2)

= 3� (�)� 3� (�� 1)� � (�� 1)� 2� (�� 2)

Hence� ! (�) = � �� (�)�
=

3

s2
� 3

s2
e�� � 1

s
e�� � 2

s
e�2�

5.9 The System function

The system function or transfer function of a linear time-invariant system is defined as the ratio
of Laplace transform of the output to Laplace transform of the input under the assumption that all
initial conditions are zero.

Hence, for relaxed LTI system, the response � (�) to an input�(�) is#(�)�(�), where#(�)
is the system function. The system function #(�) may be found in several ways:

1. For a system defined by a linear differential equation, by taking Laplace transform of the

differential equation and then finding the ratio
� (�)

�(�)
.

2. From the Laplace transform of impulse response "(�).

3. From the � domain model of a physical system like an electrical system.

EXAMPLE 5.38

The output �(�) of an LTI system is found to be ��3��(�) when the input (�) is 0-5�(�).

(a) Find the impulse response "(�) of the system.

(b) Find the output when the input is (�) = ����(�).

SOLUTION

(a) Taking Laplace transforms of (�) and �(�), we get

� (�) =
1

�+ 3
� � (�) =

0-5

�

Hence # (�) =
� (�)

� (�)
=

2�

�+ 3

� # (�) =
2 (�+ 3)� 6

(�+ 3)
= 2� 6

�+ 3

Taking inverse Laplace transform, we get

h (t) = 2δ (t)� 6e�3�u (t)
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(b)  (�) = ���� (�)

� � (�) =
1

�+ 1
Thus� � (�) =� (�)# (�)

=
2�

(�+ 1) (�+ 3)

=
�1

�+ 1
+

�2

�+ 3

where �1 =
2�

�+ 3

����
�=�1

= �1

�2 =
2�

�+ 1

����
�=�3

= 3

Therefore� � (�) =
�1
�+ 1

+
3

�+ 3

Taking inverse Laplace transform of � (�), we get

�(�) = ���� + 3��3�� � � 0

or �(�) =
����� + 3��3�

�
� �(�)

EXAMPLE 5.39

Determine the output �(�) for the circuit shown in Fig. 5.60.

Figure 5.60

SOLUTION

The transformed network of Fig. 5.60 with the assumption that all initial conditions are zero is
shown in Fig. 5.61(a).
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! (�) =
1

�
/(�)

=
1

�

�
�� !�(�)
1 +

1

�

�
��

� #(�) =
! (�)

!�(�)
=

1

�+ 1
Figure 5.61(a)

The inverse Laplace transform of #(�) is called the impulse response of the circuit and is
denoted by "(�).

" (�) = ���� (�)

I method :

From Convolution theorem, we have,

� (�) = " (�) 
 �� (�)

=

��
0

" (� ) �� (�� � ) ��

=

��
0

��	� (� )� 2��(��	)� (�� � ) ��

= 2���
��
0

� (� )� (�� � ) ��

Let us compute the product � (� )� (�� � ) for different values of �

� (� ) =

�
1� � � 0
0� � � 0

� (�� � ) =
�

1� �� � � 0 or � � �

0� �� � � 0 or � � �

Hence� � (� )� (�� � ) =
�

1� 0 � � � �� � � 0
0� otherwise

Figure 5.61(b)
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Therefore� � (�) = 2���
��

0

�� = 2����� � � 0

= 2te��u (t)

II method :
In the frequency domain, convolution operation is transformed into a multiplicative operation.

That is� ! (�) =# (�)!� (�)

=
1

(�+ 1)
� 2

(�+ 1)

=
2

(�+ 1)2

Inverse Laplace transform yields,

v(t) = 2te��u(t)Volts

Reinforcement problems

R.P 5.22

(a) Find # (�) =
!
 (�)

!� (�)
for the circuit shown in Fig. R.P. 5.22. (b) Determine �
(�) when the

intital current in the inductor is zero.

Figure R.P.5.22

SOLUTION

The Laplace transformed network with all initial conditions set to zero is shown in Fig. R.P.
5.22(a).

!
 (�) = / (�)
	
150 + 2� 10�3�



=

!� (�)
	
150 + 2� 10�3�



100 + 3� 10�3�+ 150 + 2� 10�3�

� # (�) =
!
 (�)

!� (�)
=

1.5� 105 + 2s

2.5� 105 + 5s
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(b) !
 (�) =# (�)!� (�)

=
1-5� 105 + 2�

2-5� 105 + 5�
� 100

�

=
40
	
�+ 0-75� 105



� [�+ 0-5� 105]

=
�1

�
+

�2

�+ 0-5� 105

Figure R.P. 5.22(a)

where �1 =
40
	
�+ 0-75� 105



[�+ 0-5� 105]

�����
�=0

= 60

�2 =
40
	
�+ 0-75� 105



�

�����
�=�0�5�105

= �20

Hence� !
 (�) =
60

�
� 20

�+ 0-5� 105

Taking inverse Laplace transform, we get

v� (t) =
	
60� 20e�0�5�105�



u (t)Volts

R.P 5.23

Refer the circuit shown in Fig. R.P. 5.23. The switch closes at � = 0. Determine the voltage �(�)
after the switch closes.

Figure R.P. 5.23

SOLUTION

The switch is open at � = 0� and closed at � = 0+. Let us assume that at � = 0�, the circuit is in
steady state. The circuit at � = 0� is shown in Fig. R.P. 5.23(a).
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Figure R.P. 5.23(a)

Referring to Fig. R.P. 5.23(a), we get

�
�
0�
�
=

8

2 + 2
= 2A

�
�
0�
�
= 0

From switching principles, we know that the current through an inductor and the voltage
across a capacitor cannot change instantaneously. Therefore,

� (0) = �
�
0+
�
= �

�
0�
�
= 2A

and � (0) = �
�
0+
�
= �

�
0�
�
= 0V

We shall solve this probelm using nodal technique. Hence, in the frequency domain, we will
use the parallel models for the capacitor and inductor because the parallel models contain current
sources rather than voltage sources. The frequency domain circuit is shown in Fig. R.P. 5.23(b).

Figure R.P.5.23(b)

KCL at node ! (�) :

! (�)� 8

�
2

+
! (�)

�
+
! (�)
1

�

+
2

�
= 0

� ! (�)


1

2
+

1

�
+ �

�
=

4

�
� 2

�

� ! (�)


�+ 2 + 2�2

2�

�
=

2

�
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� ! (�) =
4

2�2 + �+ 2

=
2

�2 + 0-5�+ 1

=
2

�2 + 0-5�+ (0-25)2 � (0-25)2 + 1

=
2

(�+ 0-25)2 + (0-96824)2

=
2

0-96824
� 0-96824

(�+ 0-25)2 + (0-96824)2

= 2-066� 0-96824

(�+ 0-25)2 + (0-96824)2

We know that,

�
�1
�

�

(�+ �)2 + �2

�
= ���� sin �� � (�)

Hence,
v (t) = 2.066e�0�25� sin (0.96824t)u (t)Volts

R.P 5.24

Find the impulse response of the circuit shown in Fig. R.P. 5.24.

Figure R.P. 5.24

SOLUTION

The frequency domain representation of the circuit is shown in Fig. R.P. 5.24(a) by assuming that
all initial conditions to be zero.
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Figure R.P. 5.24(a)

KCL at node a:
!� (�)� !� (�)

2
+

1

2
!� (�) +

!� (�)
1

2�

= 0

� !� (�)� !� (�)
2

+
!� (�)� !� (�)

2
+ 2�!� (�) = 0

� !� (�)


1

2
+

1

2
+ 2�

�
� !� (�)


1

2
+

1

2

�
= 0

� !� (�) [1 + 2�]� !� (�) = 0

KCL at node b:
!� (�)� !� (�)

�
+
!� (�)� !� (�)

2
= 0

� !� (�)

�1
2

�
+ !� (�)


1

�
+

1

2

�
=
!� (�)

�

� �!� (�)
2

+
(2 + �)

2�
!� (�) =

!� (�)

�
� � �!� (�) + (2 + �)!� (�) = 2!� (�)

Putting the above nodal equations in matrix form, we get
1 + 2� �1
�� 2 + �

� 
!� (�)
!� (�)

�
=


0

2!� (�)

�
Solving, we get

!� (�) =
2!� (�)

2 + �+ 4�+ 2�2 � �
� !� (�)

!� (�)
=

1

(�+ 1)2

Given �� (�) = 
 (�) � !� (�) = 1
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Hence�
!� (�)

1
=

1

(�+ 1)2

� !� (�) =
1

(�+ 1)2

Taking inverse Laplace transform, we get

v� (t) = h (t) = te��u (t)

R.P 5.25

Find the convolution of " (�) = � and � (�) = ���� for � � 0, using the inverse transform of
# (�)� (�).

SOLUTION
" (�) 
 � (�) = �

�1 �# (�)� (�)�
where # (�) = � �" (�)� = 1

�2

� (�) = � �� (�)� = 1

�+ *

Hence� # (�)� (�) =
1

�2 (�+ *)

=
�1

�
+
�2

�2
+

�3

�+ *

Solving the partial fractions yields

�1 = � 1

*2
� �2 =

1

*
� �3 =

1

*2

Hence� # (�)� (�) =
�1
*2

�
1

�

�
+

1

*

�
1

�2

�
+

1

*2

�
1

�+ *

�

� " (�) 
 � (�) = �
�1 �# (�)� (�)�

= � 1

*2
� (�) +

1

*
�� (�) +

1

*2
����� (�)

=


� 1

α2 +
t

α
+

1

α2e
�	�

�
u (t)

R.P 5.26

Consider a pulse of amplitude 5V for a duration of 4 seconds with its starting point � = 0. Find
the convolution of this pulse with itself and draw the convolution  (�) 
  (�) versus time.
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Figure R.P. 5.26(a)

SOLUTION

 (�) = 5� (�)� 5� (�� 4)

� � (�) =
5

�
� 5

�
��4�

Let � (�) =  (�) 
  (�)
Taking Laplace transform, we get

� (�) =� (�)� (�)

=
25

�2
� 50

�2
��4� +

25

�2
��8�

Figure R.P. 5.26(b)

Taking inverse Laplace transform, we get

� (�) = 25�� (�)� 50 (�� 4)� (�� 4) + 25 (�� 8)� (�� 8)

Hence� y(t) = 25r(t)� 50r(t� 4) + 25r(t� 8)

R.P 5.27

Show that �

�
����1����

(� � 1)!

�
=

�

(�+ �)�

SOLUTION

Let � (�) = 1

then � (�) =
1

�

Thus�
��� (�)

���
=

(�1)� �!
���1

We know that� � ���� (�)� = (�1)� �
�� (�)

���

With �(�) = 1, we get

� ���� = (�1)�

(�1)� �!
��+1

�

=
�!

��+1
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Putting � = � � 1, we get

�
�
���1

�
=

(� � 1)!

��

and �
�
���1����

�
=

(� � 1)!

(�+ �)�

Therefore�
�

(� � 1)!
�
�
���1����

�
=

�

(�+ �)�

R.P 5.28

Tests conducted on a certain network revealed that the current was �(�) = �2��� + 4��3� when a
unit step voltage was suddenly applied to the input terminals of the network at � = 0. What voltage
must be applied to get an output current of �(�) = 2��� if the network remains unchanged?

SOLUTION

Given, �(�) = �2��� + 4��3�� � � 0 when �(�) = �(�)

Hence� /(�) =
�2
�+ 1

+
4

�+ 3

and ! (�) =
1

�

System function = #(�) =
Laplace transform of the output
Laplace transform of the input

� #(�) =
/(�)

! (�)

=
2� (�� 1)

(�+ 1) (�+ 3)

We have to find �(�) when �(�) = 2���.

First we will find ! (�) when /(�) =
2

�+ 1
using the relation #(�) =

/(�)

! (�)
.

Hence� ! (�) =
/ (�)

# (�)

=

2

�+ 1
2� (�� 1)

(�+ 1) (�+ 3)

=
(�+ 3)

� (�� 1)

=
�1

�
+

�2

�� 1
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Using partial fractions, we find that �1 = �3 and �2 = 4

Hence� ! (�) =
�3
�

+
4

�� 1

� v (t) = �3u (t) + 4e�u (t) Volts

R.P 5.29

Find the Laplace transform of the periodic waveform shown in Fig. R.P. 5.29.

Figure R.P. 5.29

SOLUTION

The Laplace transform of a periodic waveform is found
using the relation

� (�) =
�1 (�)

1� ����

where �1(�) = � ��1(�)� = Laplace transform of �(�)
over 0 � � � % . Where % = fundamental period of
�(�).

Figure R.P. 5.29(a)Referring to Fig. R.P. 5.29(a) we can write:

�1 (�) =

�&&&&&�
&&&&&�

�

�
� 0 � � � �

1� � � � � 3�

�1
�
�+ 4� 3� � � � 4�

� �1 (�) =
1

�
� [� (�)� � (�� �)] + [� (�� �)� � (�� 3�)]

+


�1

�
�+ 4

�
[� (�� 3�)� � (�� 4�)]

=
1

�
�� (�)� 1

�
�� (�� �) + � (�� �)� � (�� 3�)� 1

�
�� (�� 3�)

+
1

�
�� (�� 4�) + 4� (�� 3�)� 4� (�� 4�)
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� �1 (�) =
1

�
�� (�)� 1

�
(�� �+ �)� (�� �) + � (�� �)� � (�� 3�)

�1

�
(�� 3�+ 3�)� (�� 3�) +

1

�
(�� 4�+ 4�)� (�� 4�)

+ 4� (�� 3�)� 4� (�� 4�)

=
1

�
�� (�)� 1

�
(�� �)� (�� �)� � (�� �) + � (�� �)� � (�� 3�)

�1

�
(�� 3�)� (�� 3�)� 3� (�� 3�) +

1

�
(�� 4�)� (�� 4�) + 4� (�� 4�)

+4� (�� 3�)� 4� (�� 4�)

=
1

�
�� (�)� 1

�
(�� �)� (�� �)� 1

�
(�� 3�)� (�� 3�) +

1

�
(�� 4�)� (�� 4�)

=
1

�
� (�)� 1

�
� (�� �)� 1

�
� (�� 3�) +

1

�
� (�� 4�)

Hence� �1 (�) = � ��1 (�)�

=
1

��2
� 1

��2
���� � 1

��2
��3�� +

1

��2
��4��

=
1

��2
�
1� ���� � ��3�� + ��4��

�
Alternate method for finding F1(s):

From Figs. R.P. 5.29(b), (c), (d), we can write

�1 (�) = � (�) + �� (�) + �� (�) + �� (�)

=
1

�
�� (�)� 1

�
(�� �)� (�� �)� 1

�
(�� 3�)� (�� 3�)

+
1

�
(�� 4�)� (�� 4�)

Figure R.P. 5.29(b)
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Figure R.P. 5.29(c)

Figure R.P. 5.29(d)

Hence� �1 (�) = � ��1 (�)�

=
1

��2
� 1

��2
���� � 1

��2
��3�� +

1

��2
��4��

Finally� � (�) = � �� (�)�

=
�1 (�)

1� ����

where % = 4�

� (�) =
1

as2

�
1� e��� � e�3�� + e�4��

�
(1� e�4��)
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R.P 5.30

Find the Laplace transform of the function �(�) shown in Fig. R.P. 5.30.

Figure R.P. 5.30

SOLUTION

Let �(�) = (�) + �(�), where (�) is a periodic triangular wave and is as shown in Fig. R.P.
5.30(a).

Figure R.P.5.30(a) Figure R.P.5.30(b)

Let 1(�) be (�) within its first period as shown in Fig. R.P.5.30(b).
Referring to Fig. R.P. 5.30(b), we can write

1 (�) =

�
2�� 0 � � � 1

4� 2�� 1 � � � 2

� 1 (�) = 2� [� (�)� � (�� 1)] + (4� 2�) [� (�� 1)� � (�� 2)]

= 2�� (�)� 2�� (�� 1) + 4� (�� 1)� 4� (�� 2)� 2�� (�� 1) + 2�� (�� 2)

= 2�� (�)� 2 (�� 1 + 1)� (�� 1) + 4� (�� 1)� 4� (�� 2)

�2 (�� 1 + 1)� (�� 1) + 2 (�� 2 + 2)� (�� 2)

= 2�� (�)� 2 (�� 1)� (�� 1)� 2� (�� 1) + 4� (�� 1)� 4� (�� 2)

�2 (�� 1)� (�� 1)� 2� (�� 1) + 2 (�� 2)� (�� 2) + 4� (�� 2)

� 1 (�) = 2�� (�)� 4 (�� 1)� (�� 1) + 2 (�� 2)� (�� 2)

� 1 (�) = 2� (�)� 4� (�� 1) + 2� (�� 2)
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Hence� �1 (�) = � �1 (�)�
=

2

�2
� 4

�2
��� +

2

�2
��2�

=
2

�2
�
1� 2��� + ��2�

�
=

2

�2
�
1� ����2

Since (�) is periodic,

� (�) = � � (�)� = �1 (�)

1� ����

where % = 2 seconds

Hence� � (�) =
2

�2
(1� ���)2
(1� ��2�)

We know that� �(�) = (�) + �(�)

Applying linearity property,

� (�) =� (�) + 2 (�)

=
2

s

�
1� e��

�2
(1� e�2�)

+
1

s

R.P 5.31

Find �(�) using convolution integral for the function,

� (�) =
4�

(�+ 1) (�2 + 4)

SOLUTION

Let � (�) = �1 (�)�2 (�)

where �1 (�) =
4

�+ 1
� �1 (�) = 4���� (�)

�2 (�) =
�

�2 + 4
� �2 (�) = cos 2�� (�)

� (�) = �
�1

[�1 (�)�2 (�)]

=

��
0

�1 ($) �2 (�� $) �$
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We know that � (� )� (�� � ) =
�

1� 0 � � � �� � � 0
0� otherwise

Hence� � (�) =

��
0

cos 2$4��(���)�$

= 4���
��

0

�� cos 2$ �$

Using the standard integral formula�
��� cos � � =

���

�2 + �2
(� cos �+ � sin �)

we get � (�) = 4���

��

1 + 4
(cos 2$+ 2 sin 2$)

��
�=0

=
4

5
���

	
�� (cos 2�+ 2 sin 2�� 1)



=

4

5
cos 2�+

8

5
sin 2�� 4

5
���� � � 0

� (�) =


4

5
cos 2�+

8

5
sin 2�� 4

5
���

�
� (�)

R.P 5.32

If "(�) = 2��3��(�) and (�) = �(�)� 
(�). Find �(�) = "(�) 
 (�) by (a) using convolution in

the time-domain (b) Finding #(�) and �(�) and then obtaining ��1
[#(�)�(�)]

SOLUTION

Given "(�) = 2��3��(�)

and (�) = �(�)� 
(�)
(a) � (�) =  (�) 
 " (�)

=

��
0

 ($)" (�� $) �$

=

��
0

	� ($)� 
 ($)	 2��3(���)� (�� $) �$

=

��
0

2��3(���)� (�� $)� ($) �$� 2

��
0

��3(���)� (�� $) 
 ($) �$
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We know that, � (�� $)� ($) =
�

1� 0 � $ � �� � � 0
0� otherwise

The second integral on the right-hand side is evaluated using the sifting property for an im-
pulse function.

Hence� � (�) =

��
0

2��3��3��$� 2��3(���) � (�� $)	�=0

� � (�) = 2��3�


�3�

3

��
0

� 2��3�� (�)

=
2

3

�
1� ��3�

�� 2��3�� (�)

Since � � 0, we associate �(�) in the first component on the right hand side of �(�).

Then� � (�) =
2

3

�
1� ��3�

�
� (�)� 2��3�� (�)

=


2

3
� 8

3
e�3�

�
u (t)

(b) Verification :

# (�) =
2

�+ 3
� � (�) =

1

�
� 1

� � (�) =� (�)# (�)

=
2 (1� �)
� (�+ 3)

=
�1

�
+

�2

�+ 3

Using partial fractions, we find that

�1 =
2

3
� �2 =

�8
3

Hence� � (�) =
2

3

�
1

�

�
� 8

3

�
1

�+ 3

�

� � (�) =
2

3
� (�)� 8

3
��3�� (�)

=


2

3
� 8

3
e�3�

�
u (t)

R.P 5.33

When an impulse 
(�) V is applied to a certain network, the ouput voltage is �
(�) = 4�(�) �
4�(�� 2) V. Find and sketch �
(�) if the imput voltage is 2� (�� 1) V.
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SOLUTION

When ��(�) = 
(�), it is given that �
(�) = 4�(�)� 4�(�� 2).
From this data, we can find the transfer function #(�) as follows:

# (�) =
� ��
 (�)�
� ��� (�)�

=
� �4� (�)� 4� (�� 2)�

� �
 (�)�
=

4

�

	
1� ��2�



The transfer function#(�) can be used to find �
(�) when ��(�) = 2�(��1) V. This procedure

is as follows:

# (�) � !
 (�)

!� (�)

� !
 (�) = !� (�)# (�)

=
2

�
���


4

�
� 4

�
��2�

�

=
8

�2
��� � 8

�2
��3�

Taking inverse Laplace transform, we get

�
 (�) = 8 (�� 1)� (�� 1)� 8 (�� 3)� (�� 3)

= 8r (t� 1)� 8r (t� 3)

The corresponding wave form for �
(�) is sketched in Fig. R.P. 5.33

Figure R.P. 5.33

R.P 5.34

Refer the two circuits shown in Fig. R.P. 5.34(a) and (b). Given that �1(�) = sin 103� and
�2(�) = ��1000�for � � 0 and , = 1 1F.

(a) Show that it is possible to have �1(�) = �2(�) for all � � 0.

(b) Determine the required values of � and . for the condition in part (a) to hold good.
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Figure R.P. 5. 34 (a) Figure R.P.5.34 (b)

SOLUTION

Referring Fig. R.P. 5.34(a) we can write in Laplace domain

/1(�) =
!1(�)

�+
1

 �

Similarly, referring Fig. R.P. 5.34(b), we can write in Laplace domain

/2(�) =
!2(�)

�.+
1

 �

�1(�) = �2(�) means that /1(�) = /2(�)

Also� !1(�) = �
�
sin 103�

�
=

103

�2 + (103)2

!2(�) = �
�
��1000�

�
=

1

�+ 103

Hence, the condition /1(�) = /2(�) gives,

103

�2 + 106
1

�+
106

�

=
1

�+ 103
1

�.+
106

�

� 103

�

�
�+

106

�

�
(�2 + 106)

=
1

. (�+ 103)

�
�2 +

106

.

�

If the above equation is satisfied, then it is possible to have �1(�) = �2(�). For this to happen,
it is required that

�

103
= .;

106

�
= 103 and 106 =

106

.

The above conditions give . = 1H and � = 103 Ω
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R.P 5.35

For the circuit shown in Fig. R.P. 5.35 has zero initial conditions. At � = 0, the switch � is
closed. Find the value of � such that the response �(�) = 0-5 sin


2� volts. Take the excitation

as �(�) = ���
	
2� A.

Figure R.P.5.35

SOLUTION

Given �(�) = ���
	
2�

Taking Laplace transform of �(�) gives

/(�) =
1

(�+

2)2

Laplace transform of the response �(�) = 0-5 sin

2� is

! (�) =
1

2

� 
2

�2 + 2

�

Hence� 0(�) =
! (�)

/(�)

=
1
2

(�+

2)2

�2 + 2
(5.29)

For the circuit shown in Fig. R.P. 5.35 we can write

0(�) = �+
1

�

2
+

1

�

� 0(�) = �+
2�

�2 + 2
(5.30)
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Equating equations 5.29 and 5.30, we get

1
2

�
�+


2
�2

�2 + 2
= �+

2�

�2 + 2

� �
�2 + 2

�
�� 2� =

1
2

�
�+


2
�2

=
�2
2
+ 2�+

2
2

Equating the like powers of �, we get � =
1
2
Ω

Exercise Problems

E.P 5.1

Find the Laplace transform of the following functions :

(a) �1(�) = sin(	�+ �)

(b) �2(�) = sin2 �

(c) �3(�) =
1

2�3
[sinh(��)� sin(��)]

Ans: F1 (s) =
s sinθ + ω cosθ

s2 + ω2 , F2 (s) =
2

s (s2 + 4)
, F3 (s) =

1

(s2 � a2) (s2 + a2)

E.P 5.2

In the network shown in Fig. E.P. 5.2, the switch � is moved from position � to position � at
� = 0, a steady state having previously been established at position �. Solve for �(�), using the
Laplace transformation method.

Figure E.P. 5.2

Ans: i (t) =
V�
R


e�
��+��

	 u (t)
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E.P 5.3

Find �1(�) and �2(�) for � � 0 for the circuit shown in Fig. E.P. 5.3 using Laplace transform.

Figure E.P. 5.3

Ans : i1 (t) =
�
2.4e�5�105� + 0.6e�6�5�105� + 3

�
u (t)mA

i2 (t) =
�
1.2e�6�5�105� � 1.2e�5�105�

�
u (t)mA

E.P 5.4

Using Laplace transform technique, find �(�) when �1 = 0-1���� A for the circuit shown in E.P.
5.4 when � = 105. Assume steady state conditions at � = 0�.

Figure E.P. 5.4

Ans: i (t) =


1

30
e��� +

27

40
e�6�� � 17

24
e�10��

�
u (t)A

E.P 5.5

The current source shown in Fig. E.P. 5.5 is �(�) = ��(�)1 A. Find �
(�) when the initial value of
�
 is zero.

Figure E.P. 5.5

Ans: v� (t) = t� 10�3
�
1� e�103�

�
mV, t � 0
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E.P 5.6

Find the inverse Laplace transform of the following � (�):

(a) � (�) =
8�� 3

�2 + 4�+ 13
(b) � (�) =

4�2

(�+ 3)2

Ans: (a) f (t) = 10.2e�2� cos (3t+ 38.3�)u (t)

(b) f (t) =
	
4e�3� � 24te�3� + 18t2e�3�



u (t)

E.P 5.7

Using convolution integral, find �(�) if

� (�) =
10

� (�+ 5)

Ans: f (t) = 2
	
1� e�5�



u (t)

E.P 5.8

Refer the network shown in Fig. E.P. 5.8. Assume the network is in steady state for � � 0.
Determine the current �(�) for � � 0.

Figure E.P. 5.8

Ans: i (t) = 4.22e�� cos (3t� 18.4�)u (t)A

E.P 5.9

Find �
(�) in the circuit shown in Fig. E.P. 5.9.

Figure E.P. 5.9

Ans: v� (t) =
	
4� 8.93e�3�73� + 4.93e�0�27�



u (t)V
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E.P 5.10

Find �
(�) for � � 0. Refer the circuit shown in Fig. E.P. 5.10.

Figure E.P. 5.10

Ans: v� (t) =


4

3
+ 2.55e

�1
3 � cos

��
17t+ 10.1�

��
u (t)

E.P 5.11

For the circuit shown in E.P. 5.11.

Find: (a) # (�) =
!
 (�)

!� (�)
(b) " (�)

(c) Step response (d) The response when ��(�) = 8 cos 2� V

Figure E.P. 5.11

Ans: (a) H (s) =
2

s+ 4

(b) h (t) = 2e�4�u (t)

(c) v� (t) = 0.5
�
1� e�4�

�
u (t)V

(d) v� (t) = 1.5
	
e�4� + cos2t+ 0.5 sin 2t



u (t)V

E.P 5.12

Refer the circuit shown in Fig. E.P. 5.12. The switch is closed at � = 0

Find : (a) �1(�) and (b) �2(�)
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Figure E.P. 5.12

Ans: (a) i1 (t) =
	
3.33� 1.67e�6�34� � 1.67e�23�66�



u (t)

(b) i2 (t) =
	
3.33 + 1.22e�6�34� � 4.55e�23�66�



u (t)

E.P 5.13

Find the Laplace transform of the waveform shown in Fig. E.P. 5.13.

Figure E.P. 5.13

Ans: F (s) =
A
�
1� e��

�
s2

� A

s
e�2�

E.P 5.14

Find the Laplace transform of the periodic waveform shown in Fig. E.P. 5.14.

Figure E.P. 5.14

Ans: F (s) =


1

s2
� 1

s2
e�2� � 2

s
e�2�

�
1

1� e�2�
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E.P 5.15

Find the Laplace transform of the waveform shown in Fig. E.P. 5.15

Figure E.P. 5.15

Ans: F (s) =


� 2

s2
+

2

s
+

2

s2
e��

�
1

1� e��

E.P 5.16

Obtain the Laplace transform of the �(�) shown in Fig. E.P. 5.16.

Figure E.P. 5.16

Ans: F (s) =
1

s

	
5� 3e�� + 3e�3� � 5e�4�


E.P 5.17

Obtain the Laplace transform of the unit impulses shown in Fig. E.P. 5.17

Figure E.P. 5.17

Ans: X(s) =
1

1� e��
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E.P 5.18

Refer the circuit shown in Fig. E.P. 5.18. Let �(0) = 1A� �
(0) = 2V and ��(�) = 4��2��(�)V.
Find �
(�) for � � 0.

Figure E.P. 5.18

Ans: v� (t) = � 	2 + 4.33e�0�5� + 1.33e�2�


u (t) volts

E.P 5.19

Find �(�) in the circuit shown in Fig. E.P. 5.19. Assume that the circuit is initially relaxed.

Figure E.P. 5.19

Ans: i (t) =
	
0.5� 0.5e�4� � te�4�



u (t)

E.P 5.20

Refer the circuit shown in Fig. E.P. 5.20. Assume zero initial conditions. Use convolution theorem
to find �(�).

Figure E.P. 5.20

Ans: i (t) =
t

2
e�5� � (t� 2)

2
e�5(��2)
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E.P 5.21

There is no energy stored in the circuit shown in Fig. E.P. 5.21 at the time when the switch is
opened. Show that

!2 (�) =
�/� (�)

 1


�2 +

�
�1

.1

�
�+

1

.1 1

�

Figure E.P. 5.21

E.P 5.22

Refer the circuit shown in Fig. E.P. 5.22. If ��(�) = 6�(�)mA, find �2(�).

Figure E.P. 5.22

Ans: v2 (t) = 10e�4000� cos (3000t� 90�)u (t)V

E.P 5.23

Find !
(�) and �
(�) in the circuit shown in Fig. E.P. 5.23 if the initial energy is zero and the
switch is closed at � = 0

Figure E.P. 5.23

Ans: v� (t) =
	
30� 60e�5000� + 30e�10000�



u (t)
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E.P 5.24

The initial energy in the circuit in Fig. E.P. 5.24 is zero.
(a) Find !
(�).

(b) Use the initial and final value theorems to find �
(0+) and �
(�).

(c) Do the values obtained in part (b) agree with known circuit behaviour? Explain.

(d) Find �
(�).

Figure E.P. 5.24

Ans: (a) V� (s) =
�21� 103s+ 4200

s (s2 + 8s+ 25)

(b) v�
�
0+
�
= 0, v� (	) = 168V

(c) YES
(d) v� (t) =

	
168 + 7225.95e�4� cos (3t+ 91.33�)



u (t)V

E.P 5.25

Find the initial and final value of #(�) =
�3 + 25 + 6

�(�+ 1)2(�+ 3)
Ans: 1, 2

E.P 5.26

Verify final value theorem and initial value theorem for the function,
f(t) = 2+ e�3� cos 2t

E.P 5.27

Using the convolution theorem, find the Laplace inverse of the following functions:

(i) � (�) =
1

�(�+ 1)
(ii) � (�) =

1

(�� �)2 (iii) � (�) =
�

(�+ 1)(�+ 2)

Ans: (i) f(t) = 1� e��

(ii) f(t) = te��

(iii) f(t) = e�� + 2e�2� � 2e��
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E.P 5.28

In the circuit shown in Fig. E.P. 5.28, find the voltage across the resistance ��(�) using convolution
integral. Given that ��(�) = ��2� and � = 1 second.

Figure E.P. 5.28

Ans: v�(t) = 2e�2� � e��, t � 0

E.P 5.29

Find the inverse Laplace transform of the following functions:

(i)
3�

(�2 + 1)(�2 + 4)
(ii)

1

(�+ 1)(�+ 2)2
(iii)

�2 + 3

(�2 + 2�+ 2)(�+ 2)

Ans: (i) cos t� cos 2t

(ii) e�� � e�2�(1 + t)

(iii)
7

2
e�2� � 2.5e�� cos t+ 0.5e�� sin t

E.P 5.30

In the circuit shown in Fig. E.P. 5.30, switch � is open for a long time so that steady state is
reached and at � = 0, switch is closed. Determine the current �(�) in 10 ohm resistor.

Figure E.P.5.30

Ans: Current in each 10 Ω resistor = 2u(t)� e�5�
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E.P 5.31

Synthesize the wave form shown in Fig. E.P. 5.31 using ramp function and obtain the Laplace
transform of �(�).

Figure E.P.5.31

Ans: F (s) =
5

s2
[1� 2e�� + e�2�]

E.P 5.32

Find the Laplace transform of the voltage wave form as shown in Fig. E.P. 5.32.

Figure E.P.5.32

Ans: V (s) =
2

s2
[1� 3e�� + 5e�1�5� � 6e�2� + 6e�3�]

E.P 5.33

Find the Laplace transform of the perodic wave forms shown in Figs. E.P. 5.33(a) and (b).

Figure E.P.5.33(a)
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Figure E.P.5.33(b)

Ans: (i) F (s) =
1

1� e�4�


1

s2
� 2

s2
e�� +

1

s2
e�2� � 1

s
e�2� +

2

s2
e�3� � 1

s2
e�4�

�

(ii) F (s) =
1

1� e�2�


2

s
� 4e��

s
+

2

s
e�2�

�

E.P 5.34

For the circuit shown in Fig. E.P. 5.34, find the current transients in both the loops using Laplace
transformation method.

Figure E.P.5.34

Ans: i1(t) =
12

7
� 5

7
e�2� � e�5� Ampere� t � 0

i2(t) =
2

7
+

5

7
e�7� � e�5� Ampere� t � 0

E.P 5.35

Find the Laplace transform of the saw tooth wave as shown in Fig. E.P. 5.35.

Figure E.P. 5.35
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Ans: F (s) =
V (1� e��� � Tse���)

Ts2(1� e���)

E.P 5.36

For the circuit shown in Fig. E.P. 5.36 switch � is closed at � = 0. Determine the current �(�) for
� � 0.

Figure E.P. 5.36

Ans: i(t) = 0.357e�2� � 5

25 + j2
e�25� � 5

25� j2
e�25�

E.P 5.37

For the circuit shown in Fig. E.P. 5.37, determine the source current when the switch � is closed
at � = 0. Assume zero initial conditions.

Figure E.P. 5.37

Ans: i(t) = 2.57e�� � 0.57e�0�3� Amperes� t � 0





�
������	

���������	
������

7.1 Introduction

A pair of terminals through which a current may enter or leave a network is known as a port.
A port is an access to the network and consists of a pair of terminals; the current entering one
terminal leaves through the other terminal so that the net current entering the port equals zero.
There are several reasons why we should study two-ports and the parameters that describe them.
For example, most circuits have two ports. We may apply an input signal in one port and obtain
an output signal from the other port. The parameters of a two-port network completely describes
its behaviour in terms of the voltage and current at each port. Thus, knowing the parameters of a
two port network permits us to describe its operation when it is connected into a larger network.
Two-port networks are also important in modeling electronic devices and system components.
For example, in electronics, two-port networks are employed to model transistors and Op-amps.
Other examples of electrical components modeled by two-ports are transformers and transmission
lines.

Figure 7.1 A two-port network

Four popular types of two-ports param-
eters are examined here: impedance, admit-
tance, hybrid, and transmission. We show
the usefulness of each set of parameters,
demonstrate how they are related to each
other.

Fig. 7.1 represents a two-port network.
A four terminal network is called a two-port
network when the current entering one ter-
minal of a pair exits the other terminal in
the pair. For example, I1 enters terminal � and exits terminal � of the input terminal pair �-�.

We assume that there are no independent sources or nonzero initial conditions within the linear
two-port network.
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7.2 Admittance parameters

Figure 7.2 A linear two-port network

The network shown in Fig. 7.2 is assumed to be linear
and contains no independent sources. Hence, princi-
ple of superposition can be applied to determine the
current I1, which can be written as the sum of two
components, one due to V1 and the other due to V2.
Using this principle, we can write

I1 = y11V1 + y12V2

where y11 and y12 are the constants of proportionality
with units of Siemens.

In a similar way, we can write

I2 = y21V1 + y22V2

Hence, the two equations that describe the two-port network are

I1 = y11V1 + y12V2 (7.1)

I2 = y21V1 + y22V2 (7.2)

Putting the above equations in matrix form, we get�
I1
I2

�
=

�
y11 y12

y21 y22

� �
V1

V2

�

Figure 7.3 Determination of y11 and y12

Here the constants of proportionality y11�y12�y21

and y22 are called y parameters for a network. If
these parameters y11, y12, y21 and y22 are known,
then the input/output operation of the two-port is
completely defined.

From equations (7.1) and (7.2), we can determine
y parameters. We obtain y11 and y21 by connecting
a current source I1 to port 1 and short-circuiting port
2 as shown in Fig. 7.3, finding V1 and I2, and then
calculating,

y11 =
I1
V1

����
V2=0

y21 =
I2
V1

����
V2=0

Since y11 is the admittance at the input measured in siemens with the output short-circuited,
it is called short-circuit input admittance. Similarly, y21 is called the short-circuit transfer admit-
tance.
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Similarly, we obtain y12 and y22 by connecting a current source I2 to port 2 and short-
circuiting port 1 as in Fig. 7.4, finding I1 and V2, and then calculating,

y12 =
I1
V2

����
V1=0

y22 =
I2
V2

����
V1=0

Figure 7.4 Determination of y12 and y22

y12 is called the short-circuit trans-
fer admittance and y22 is called the short-
circuit output admittance. Collectively the
y parameters are referred to as short-circuit
admittance parameters.

Please note that y12 = y21 only when
there are no dependent sources or Op-amps
within the two-port network.

EXAMPLE 7.1
Determine the admittance parameters of the T network shown in Fig. 7.5.

Figure 7.5

SOLUTION

To find y11 and y21, we have to short the output terminals and connect a current source I1 to the
input terminals. The circuit so obtained is shown in Fig. 7.6(a).

I1 =
V1

4 +
2� 2

2 + 2

=
V1

5

Hence� y11 =
I1
V1

����
V2=0

=
1

5
S

Figure 7.6(a)

Using the principle of current division,

�I2 = I1 � 2

2 + 2
=

I1
2

� �I2 = 1

2

�
V1

5

�

Hence� y21 =
I2
V1

����
V2=0

=
�1
10

S
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To find y12 and y22, we have to short-circuit the input terminals and connect a current source
I2 to the output terminals. The circuit so obtained is shown in Fig. 7.6(b).

I2 =
V2

2 +
4� 2

4 + 2

=
V2

2 +
4

3

=
3V2

10

Hence� y22 =
I2
V2

����
V1=0

=
3

10
S

Figure 7.6(b)

Employing the principle of current division, we have

�I1 = I2 � 2

2 + 4

� � I1 =
2I2
6

� � I1 =
1

3

�
3V2

10

�

Hence� y12 =
I1
V2

����
V1=0

=
�1
10

S

It may be noted that, y12 = y21. Thus, in matrix form we have

I = YV

�
�
� I1

I2

�
� =

�
��

1

5

�1
10

�1
10

3

10

�
	�
�
� V1

V2

�
�

EXAMPLE 7.2
Find the y parameters of the two-port network shown in Fig. 7.7. Then determine the current in a
4Ω load, that is connected to the output port when a 2A source is applied at the input port.

Figure 7.7
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SOLUTION

To find y11 and y21, short-circuit the output terminals and connect a current source I1 to the input
terminals. The resulting circuit diagram is shown in Fig. 7.8(a).

I1 =
V1

1Ω��2Ω =
V1

1� 2

1 + 2

� I1 =
3

2
V1

Hence� y11 =
I1
V1

����
V2=0

=
3

2
S

Figure 7.8(a)
Using the principle of current division,

�I2 = I1 � 1

1 + 2

� � I2 =
1

3
I1

� � I2 =
1

3

�
3

2
V1

�

Hence� y21 =
I2
V1

=
�1
2
S

To find y12 and y22, short the input terminals and connect a current source I2 to the output
terminals. The resulting circuit diagram is shown in Fig. 7.8(b).

I2 =
V2

2Ω��3Ω

=
V2

2� 3

2 + 3

=
5V2

6

y22 =
I2
V2

����
V1=0

=
5

6
S

Figure 7.8(b)
Employing the current division principle,

�I1 = I2 � 3

2 + 3

� � I1 =
3

5
I2
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� � I1 =
3

5

�
5V2

6

�

� I1 =
�1
2
V2

Hence� y12 =
�I1
V2

����
V1=0

=
�1
2
S

Therefore, the equations that describe the two-port network are

I1 =
3

2
V1 � 1

2
V2 (7.3)

I2 = �1

2
V1 +

5

6
V2 (7.4)

Figure 7.8(c)

Putting the above equations (7.3) and
(7.4) in matrix form, we get�

��
3

2

�1
2

�1
2

5

6

�
	�
�
� V1

V2

�
� =

�
� I1

I2

�
�

Referring to Fig. 7.8(c), we find that
I1 = 2A and V2 = �4I2

Substituting I1 = 2A in equation (7.3),
we get

2 =
3

4
V1 � 1

2
V2 (7.5)

Multiplying equation (7.4) by �4, we get

�4I2 = 2V1 � 20

6
V2

� V2 = 2V1 � 20

6
V2

� 0 = 2V1 �


20

6
+ 1

�
V2

� 0 =
�1
2
V1 +

13

12
V2 (7.6)

Putting equations (7.5) and (7.6) in matrix form, we get�
��

3

2

�1
2

�1
2

13

12

�
	�
�
� V1

V2

�
� =

�
� 2

0

�
�
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It may be noted that the above equations are simply the nodal equations for the circuit shown
in Fig. 7.8(c). Solving these equations, we get

V2 =
3

2
V

and hence, I2 =
�1
4
V2 =

�3
8
A

EXAMPLE 7.3
Refer the network shown in the Fig. 7.9 containing a current-controlled current source. For this
network, find the y parameters.

Figure 7.9

SOLUTION

To find y11 and y21 short the output terminals and connect a current source I1 to the input
terminals. The resulting circuit diagram is as shown in Fig. 7.10(a) and it is further reduced
to Fig. 7.10(b).

Figure 7.10(a)

I1 =
V1

2� 2

2 + 2
� I1 =V1

Hence� y11 =
I1
V1

����
V2=0

= 1S

Figure 7.10(b)
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Applying KCL at node A gives (Referring to Fig. 7.10(a)).

I3 + I2 = 3I1

� V1

2
+ I2 = 3I1

� V1

2
+ I2 = 3V1

� 5V1

2
= I2

Hence� y21 =
I2
V1

=
5

2
S

To find y22 and y12, short the input terminals and connect a current source I2 at the output
terminals. The resulting circuit diagram is shown in Fig. 7.10(c) and further reduced to Fig.
7.10(d).

Figure 7.10(c)

I2 = �I�1 = �V2

2

� � I1 =
V2

2

Hence� y12 =
I1
V2

=
�1
2
S

Applying KCL at node B gives

I2 =
V2

2
+

V2

2
+ 3I1

But I1 =
�V2

2

Hence� I2 =
V2

2
+

V2

2
� 3

V2

2

� y22 =
I2
V2

����
V1=0

= �0�5S
Figure 7.10(d)
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Short-cut method:
Referring to Fig. 7.9, we have KCL at node V1:

I1 =
V1

2
+

V1 �V2

2
=V1 � 0�5V2

Comparing with
I1 = y11V1 + y12V2

we get
y11 = 1S and y12 = �0�5S

KCL at node V2:

I2 = 3I1 +
V2

2
+

V2 �V1

2

= 3 [V1 � 0�5V2] +
V2

2
+

V2 �V1

2

� I2 =
5

2
V1 � 0�5V2

Comparing with I2 = y21V1 + y22V2

we get
y21 = 2�5S and y22 = �0�5S

EXAMPLE 7.4
Find the y parameters for the two-port network shown in Fig. 7.11.

Figure 7.11

SOLUTION

To find y11 and y21 short-circuit the output terminals as shown in Fig. 7.12(a). Also connect a
current source I1 to the input terminals.
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Figure 7.12(a)

KCL at node V1:

I1 =
V1

1
+

V1 �V�

1

2
� 3V1 � 2V� = I1 (7.7)

KCL at node V�:

V� �V1

1

2

+
V� � 0

1
+ 2V1 = 0

� 2V� � 2V1 +V� + 2V1 = 0

� V� = 0 (7.8)

Making use of equation (7.8) in (7.7), we get

3V1 = I1

Hence� y11 =
I1
V1

����
V2=0

= 3S

Since V� = 0, I2 = 0,

� y21 =
I2
V1

����
V2=0

= 0S

To find y22 and y12 short-circuit the input terminals and connect a current source I2 to the
output terminals. The resulting circuit diagram is shown in Fig. 7.12(b).
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Figure 7.12(b)

KCL at node V2:

V2

1

2

+
V2 �V�

1
= I2

� 3V2 �V� = I2 (7.9)

KCL at node V�:

V� �V2

1
+

V� � 0
1

2

+ 0 = 0

� 3V� �V2 = 0

or V� =
1

3
V2 (7.10)

Substituting equation (7.10) in (7.9), we get

3V2 � 1

3
V2 = I2

� 8

3
V2 = I2

Hence� y22 =
I2
V2

=
8

3
S

We have� V� =
1

3
V2 (7.11)

Also� I1 + I3 = 0

� I1 = �I3
=
�V�

1

2

= �2V� (7.12)



506 � Network Theory

Making use of equation (7.12) in (7.11), we get

�I1
2

=
1

3
V2

Hence� y12 =
I1
V2

����
V1=0

=
�2
3
S

EXAMPLE 7.5

Find the y parameters for the resistive network shown in Fig. 7.13.

Figure 7.13

SOLUTION

Converting the voltage source into an equivalent current source, we get the circuit diagram shown
in Fig. 7.14(a).

To find y11 and y21, the output terminals of Fig. 7.14(a) are shorted and connect a current
source I1 to the input terminals. This results in a circuit diagram as shown in Fig. 7.14(b).

Figure 7.14(a) Figure 7.14(b)

KCL at node V1:
V1

2
+

V1 �V2

1
= I1 + 3V1
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Since V2 = 0, we get

V1

2
+V1 = I1 + 3V1

� I1 =
�3
2
V1

Hence� y11 =
I1
V1

����
V2=0

=
�3
2
S

KCL at node V2:
V2

2
+ 3V1 +

V2 �V1

1
= I2

Since V2 = 0, we get
0 + 3V1 �V1 = I2

� I2 = 2V1

Hence y21 =
I1
V2

= 2S

To find y21 and y22, the input terminals of Fig. 7.14(a) are shorted and connect a current
source I2 to the output terminals. This results in a circuit diagram as shown in Fig. 7.14(c).

Figure 7.14(c)

Figure 7.14(d)
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KCL at node V2:

V2

2
+

V2 � 0

1
= I2

� 3

2
V2 = I2

Hence� y22 =
I2
V2

=
3

2
S

KCL at node V1:

I1 =
V1

2
+

V1 �V2

1
= 0

Since V1 = 0, we get

I1 = �V2

Hence� y12 =
I1
V2

= �1S

EXAMPLE 7.6
The network of Fig. 7.15 contains both a dependent current source and a dependent voltage
source. Find the y parameters.

Figure 7.15

SOLUTION

While finding y parameters, we make use of KCL equations. Hence, it is preferable to have current
sources rather than voltage sources. This prompts us to convert the dependent voltage source into
an equivalent current source and results in a circuit diagram as shown in Fig. 7.16(a).

To find y11 and y21, refer the circuit diagram as shown in Fig. 7.16(b).

KCL at node V1:

V1

1
+

V1 �V2

1
+ 2V1 = 2V2 + I1
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Figure 7.16(a)

Figure 7.16(b)

Since V2 = 0, we get

V1 +V1 + 2V1 = I1

� 4V1 = I1

Hence� y11 =
I1
V1

= 4S

KCL at node V2:
V2

1
+

V2 �V1

1
= 2V1 + I2

Since V2 = 0, we get

�V1 = 2V1 + I2

� � 3V1 = I2

Hence� y21 =
I2
V1

����
V2=0

= �3S
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To find y22 and y12, refer the circuit diagram shown in Fig. 7.16(c).
KCL at node V1:

V1

1
+

V1 �V2

1
+ 2V1 = 2V2 + I1

Since V1 = 0, we get

�V2 = 2V2 + I1

� � 3V2 = I1

Hence� y12 =
I1
V2

����
V1=0

= �3S

Figure 7.16(c)

KCL at node V2:
V2

1
+

V2 �V1

1
= 2V1 + I2

Since V1 = 0, we get

V2 +V2 = 0 + I2

� � 2V2 = I2

Hence� y22 =
I2
V2

����
V1=0

= 2S

7.3 Impedance parameters

Figure 7.17

Let us assume the two port network shown in Fig. 7.17 is a
linear network that contains no independent sources. Then
using superposition theorem, we can write the input and out-
put voltages as the sum of two components, one due to I1
and other due to I2:

V1 = z11I1 + z12I2

V2 = z21I1 + z22I2
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Putting the above equations in matrix from, we get�
V1

V2

�
=

�
z11 z12
z21 z22

� �
I1
I2

�

The z parameters are defined as follows:

z11 =
V1

I1

����
I2=0

z12 =
V1

I2

����
I1=0

z21 =
V2

I1

����
I2=0

z22 =
V2

I2

����
I1=0

In the preceeding equations, letting I1 or I2 = 0 is equivalent to open-circuiting the input or
output port. Hence, the z parameters are called open-circuit impedance parameters. z11 is defined
as the open-circuit input impedance, z22 is called the open-circuit output impedance, and z12 and
z21 are called the open-circuit transfer impedances.

If z12 = z21, the network is said to be reciprocal network. Also, if all the z-parameter are
identical, then it is called a symmetrical network.

EXAMPLE 7.7
Refer the circuit shown in Fig. 7.18. Find the z parameters of this circuit. Then compute the
current in a 4Ω load if a 24

�
0� V source is connected at the input port.

Figure 7.18

SOLUTION

To find z11 and z21, the output terminals are open circuited. Also connect a voltage source V1 to
the input terminals. This gives a circuit diagram as shown in Fig. 7.19(a).

Figure 7.19(a)
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Applying KVL to the left-mesh, we get

12I1 + 6I1 =V1

� V1 = 18I1

Hence� z11 =
V1

I1

����
I2=0

= 18Ω

Applying KVL to the right-mesh, we get

�V2 + 3� 0 + 6I1 = 0

� V2 = 6I1

Hence� z21 =
V2

I1
= 6Ω

To find z22 and z12, the input terminals are open circuited. Also connect a voltage source V2

to the output terminals. This results in a network as shown in Fig. 7.19(b).

Figure 7.19(b)

Applying KVL to the left-mesh, we get

V1 = 12� 0 + 6I2

� V1 = 6I2

Hence� z12 =
V1

I2

����
I1=0

= 6Ω

Applying KVL to the right-mesh, we get

�V2 + 3I2 + 6I2 = 0

� V2 = 9I2

Hence� z22 =
V2

I2

����
I1=0

= 9Ω

The equations for the two-port network are, therefore

V1 = 18I1 + 6I2 (7.13)

V2 = 6I1 + 9I2 (7.14)
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The terminal voltages for the network shown in Fig. 7.19(c) are

V1 = 24
�
0� (7.15)

V2 = �4I2 (7.16)

Figure 7.19(c)

Combining equations (7.15) and (7.16) with equations (7.13) and (7.14) yields

24
�
0� = 18I1 + 6I2

0 = 6I1 + 13I2

Solving, we get I2 = �0�73
�
0� A

EXAMPLE 7.8
Determine the z parameters for the two port network shown in Fig. 7.20.

Figure 7.20

SOLUTION

To find z11 and z21, the output terminals are open-circuited and a voltage source is connected to
the input terminals. The resulting circuit is shown in Fig. 7.21(a).

Figure 7.21(a)
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By inspection, we find that I3 = �V1

Applying KVL to mesh 1, we get

�1 (I1 � I3) =V1

� �1I1 ��1I3 =V1

� �1I1 ��1�V1 =V1

� (1 +�1�)V1 = �1I1

Hence� z11 =
V1

I1

����
I2=0

=
�1

1 + ��1

Applying KVL to the path V1 � �2 � �3 � V2, we get

�V1 +�2I3 ��3I2 +V2 = 0

Since I2 = 0 and I3 = �V1, we get

�V1 +�2�V1 � 0 +V2 = 0

� V2 =V1 (1� ��2)

= (1� ��2)
�1I1

1 + ��1

Hence� z21 =
V2

I1

����
I2=0

=
�1 (1� ��2)

1 + ��1

The circuit used for finding z12 and z22 is shown in Fig. 7.21(b).

Figure 7.21(b)

By inspection, we find that

I2 � I3 = �V1 andV1 = I3�1

� I2 � I3 = � (I3�1)

� I3 (1 + ��1) = I2
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Applying KVL to the path �3 � �2 � �1 � V2, we get

�3I2 + (�2 +�1) I3 �V2 = 0

� �3I2 + (�2 +�1)
I2

1 + ��1
=V2

� I2

�
�3 +

�2 +�1

1 + ��1

�
=V2

Hence� z22 =
V2

I2

����
I1=0

= �3 +
�2 +�1

1 + ��1
Ω

Applying KCL at node a, we get

�V1 + I3 = �2

� �V1 +
V1

�1
= I2

� V1

�
� +

1

�1

�
= I2

� z12 =
V1

I2

����
I1=0

=
1

� +
1

�1

=
�1

1 + ��1

EXAMPLE 7.9
Construct a circuit that realizes the following z parameters.

z =

�
12 4
4 8

�

SOLUTION

Comparing z with =
�
z11 z12
z21 z22

�
, we get

z11 = 12Ω� z12 = z21 = 4Ω� z22 = 8Ω

Let us consider a T network as shown in Fig. 7.22(a). Our objective is to fit in the values of
�1� �2 and �3 for the given z.

Applying KVL to the input loop, we get

V1 = �1I1 +�3 (I1 + I2)

= (�1 +�3) I1 +�3I2
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Figure 7.22(a)

Comparing the preceeding equation with

V1 = z11I1 + z12I2

we get

z11 = �1 +�3 = 12Ω

z12 = �3 = 4Ω

� �1 = 12��3 = 8Ω

Applying KVL to the output loop, we get

V2 = �2I2 +�3 (I1 + I2)

� V2 = �3I1 + (�2 +�3) I2

Figure 7.22(b)

Comparing the immediate preceeding
equation with

V2 = z21I1 + z22I2

we get

z21 = �3 = 4Ω

z22 = �2 +�3 = 8Ω

� �2 = 8��3 = 4Ω

Hence, the network to meet the given z parameter set is shown in Fig. 7.22(b).

EXAMPLE 7.10

If z =

�
40 10
20 30

�
Ω for the two-port network, calculate the average power delivered to 50Ω

resistor.

Figure 7.23
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SOLUTION

We are given z11 = 40Ω z12 = 10Ω z21 = 20Ω z22 = 30Ω

Since z12 �= z21, this is not a reciprocal network. Hence, it cannot be represented only by
passive elements. We shall draw a network to satisfy the following two KVL equations:

V1 = 40I1 + 10I2

V2 = 20I1 + 30I2

One possible way of representing a network that is non-reciprocal is as shown in Fig. 7.24(a).

Figure 7.24(a)

Now connecting the source and the load to the two-port network, we get the network as shown
in Fig. 7.24(b).

Figure 7.24(b)

KVL for mesh 1:

60I1 + 10I2 = 100

� 6I1 + I2 = 10

KVL for mesh 2:

80I2 + 20I1 = 0

� 4I2 + I1 = 0

� I1 = �4I2
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Solving the above mesh equations, we get

�24I2 + I2 = 10

� � 23I2 = 10

� I2 =
�10
23

Power supplied to the load = �I2�2��

=
100

(23)2
� 50

= 9�45W

EXAMPLE 7.11

Refer the network shown in Fig. 7.25. Find the z parameters for the network. Take � =
4

3

Figure 7.25

SOLUTION

To find z11 and z21, open-circuit the output terminals as shown in Fig. 7.26(a). Also connect a
voltage source V1 to the input terminals.

Figure 7.26(a)

Applying KVL around the path V1 � 4Ω� 2Ω� 3Ω, we get

4I1 + 5I3 =V1 (7.17)

Also� V2 = 3I3� so I3 =
V2

3
(7.18)
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KCL at node b leads to

I1 � �V2 � I3 = 0 (7.19)

Substituting equation (7.18) in (7.19), we get

I1 = �V2 +
V2

3
=

�
�+

1

3

�
V2

=

�
4

3
+

1

3

�
V2

Hence� z21 =
V2

I1

����
I2=0

=
3

5
Ω

Substituting equation (7.18) in (7.17), we get

V1 = 4I1 + 5
V2

3

= 4I1 +
5

3



I1 � 3

5

� 

Since

V2

I1
=

3

5

�

Therefore� z11 =
V1

I1
= 5Ω

To obtain z22 and z12, open-circuit the input terminals as shown in Fig. 7.26(b). Also, connect
a voltage source V2 to the output terminals.

Figure 7.26(b)

KVL for the mesh on the left:

V1 + 5I4 � 3I2 = 0 (7.20)

KVL for the mesh on the right:

V2 + 3I4 � 3I2 = 0 (7.21)

Also� I4 = �V2 (7.22)
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Substituting equation (7.22) in (7.21), we get

V2 + 3�V2 � 3I2 = 0

� V2 (1 + 3�) = 3I2

Hence� z22 =
V2

I2

����
I1=0

=
3

1 + 3�

=
3

1 + 3



4

3

� =
3

5
Ω

Substituting equation (7.22) in (7.20), we get

V1 + 5�V2 = 3I2

Substituting V2 =
3

5
I2, we get

V1 + 5�



3

5
� I2

�
= 3I2

Hence� z12 =
V1

I2

����
I1=0

= 3� 3�

= 3� 3
4

3
= �1Ω

Finally, in the matrix form, we can write

z =

�
� z11 z12

z21 z22

�
� =

�
� 5 �1

5

3

3

5

�
�

Please note that z12 �= z21, since a dependent source is present in the circuit.

EXAMPLE 7.12
Find the Thevenin equivalent circuit with respect to port 2 of the circuit in Fig. 7.27 in terms of z
parameters.

Figure 7.27
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SOLUTION

Figure 7.28(a)

The two port network is defined by

V1 = z11I1 + z12I2;

V2 = z21I1 + z22I2;

here, V1 = V� � 	�I1
and V2 = I�	� = �I2	�

To find Thevenin equivalent circuit as seen
from the output terminals, we have to remove
the load resistance ��. The resulting circuit
diagram is shown in Fig. 7.28(a).


� = V2�I2=0

= z21I1 (7.23)

With I2 = 0, we get

V1 = z11I1

� I1 =
V1

z11
=

� � I1	�

z11

Solving for I1, we get

I1 =

�

z11 + 	�

(7.24)

Substituting equation (7.24) into equation (7.23), we get


� =
z21
�

z11 + 	�

Figure 7.28(b)

To find 	�, let us deactivate all the indepen-
dent sources and then connect a voltage source
V2 across the output terminals as shown in Fig.
7.28(b).

	� =
V2

I2

����
Vg=0

; where V2 = z21I1+z22I2

We know that V1 = z11I1 + z12I2
Substituting, V1 = �I1	� in the preceed-

ing equation, we get

�I1	� = z11I1 + z12I2

Solving� I1 =
�z12I2
z11 + 	�
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We know that,
V2 = z21I1 + Z22I2

= z21

� �z12I2
z11 + 	�

�
+ z22I2

Thus� 	� =
V2

I2
= z22 � z21z12

z11 + 	�

The Thevenin equivalent circuit with respect to the output termi-
nals along with load impedance 	� is as shown in Fig. 7.28(c).

Figure 7.28(c)

EXAMPLE 7.13
(a) Find the z parameters for the two-port network shown in Fig. 7.29.

(b) Find V2(�) for � � 0 where �(�) = 50�(�)V.

Figure 7.29

SOLUTION

The Laplace transformed network with all initial conditions set to zero is as shown in Fig. 7.30(a).

Figure 7.30(a)
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(a) To find z11 and z21, open-circuit the output terminals and then connect a voltage source
V1 across the input terminals as shown in Fig. 7.30(b).

Applying KVL to the left mesh, we get

V1 =



�+

1

�

�
I1

Hence� z11 =
V1

I1

����
I2=0

= �+
1

�
=
�2 + 1

�

Also� V2 = I1
1

�

Hence� z21 =
V2

I1

����
I2=0

=
1

�

To find z21 and z22, open-circuit the input terminals and then connect a voltage source V2

across the output terminals as shown in Fig. 7.30(c).

Figure 7.30(b) Figure 7.30(c)

Applying KVL to the right mesh, we get

V2 =

�
�+

1

�

�
I2

� z22 =
V2

I2

����
I1=0

=
�2 + 1

�

Also� V1 =
1

�
I2

� z12 =
V1

I2

����
I1=0

=
1

�

Summarizing,

z =

�
� z11 z12

z21 z22

�
� =

�
���

�2 + 1

�

1

�

1

�

�2 + 1

�

�
		�
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(b)

Figure 7.30(d)

Refer the two port network shown in Fig. 7.30(d).

V1 = 
� � I1	� = z11I1 + z12I2

� 
� = (z11 + 	�) I1 + z12I2

� 
� = (z11 + 	�) I1 + z12

��V2

	�

�
(7.25)

and V2 = z21I1 + z22I2

� V2 = z21I1 � z22
V2

	�

� I1 =
1

z21

�
1 +

z22
	�

�
V2 (7.26)

Substituting equation (7.26) in equation (7.25) and simplifying, we get

V2


�
=

z21z�
(	� + z22) (z11 + 	�)� z12z21

(7.27)

Substituting for 	�, 	� and z-parameters, we get

V2(�)


�(�)
=

1

�

�2 + 1

�
+ 1

�

�2 + 1

�
+ 1

�
� 1

�2

=
�

(�2 + �+ 1)2 � 1

� V2(�)


�(�)
=

1

�3 + 2�2 + 3�+ 2

=
1

(�+ 1) (�2 + �+ 2)

Hence� V2(�) =
V�(�)

(�+ 1) (�2 + �+ 2)
(7.28)
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The equation �2 + �+ 2 = 0 gives

�1�2 = �1

2
� �

�
7

2

This means that, V2(�) =

�(�)

(�+ 1)


�+

1

2
� �

�
7

2

�
�+

1

2
+ �

�
7

2

�

Given �(�) = 50�(�)

� 
�(�) =
50

�

Hence� V2(�) =
50

�(�+ 1)


�+

1

2
� �

�
7

2

�
�+

1

2
+ �

�
7

2

�

=
�1

�
+

�2

�+ 1
+

�3

�+
1

2
� �

�
7

2

+
��

3

�+
1

2
+ �

�
7

2
By performing partial fraction expansion, we get

�1 = 25� �2 = �25� �3 = 9�45 /90�

Hence� V2(�) =
25

�
� 25

�+ 1
+

9�45 /90�

�+
1

2
� �

�
7

2

+
9�45 /�90�

�+
1

2
+ �

�
7

2

Taking inverse Laplace transform of the above equation, we get

V2(�) =
�
25� 25��� + 18�9��0�5� cos(1�32�+ 90�)

�
�(�)V

Verification:

V2(0) = 25� 25 + 18�9 cos 90 = 0

V2(	) = 25 + 0 + 0 = 25V

Please note that at � =	, the circuit diagram of Fig. (7.29) looks as shown in Fig. 7.30(e).

Figure 7.30(e) }

I(	) =
50

2
= 25A

Hence� V2(	) = 
�(	) = 25V
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EXAMPLE 7.14
The following measurements were made on a resistive two-port network:
Measurement 1: With port 2 open and 100V applied to port 1, the port 1 current is 1.125A and
port 2 voltage is 104V.

Measurement 2: With port 1 open and 50V applied to port 2, the port 2 current is 0.3A, and the
port 1 voltage is 30 V.

Find the maximum power that can be delivered by this two-port network to a resistive load at
port 2 when port 1 is driven by an ideal voltage source of 100 Vdc.

SOLUTION

z11 =
V1

I1

����
I2=0

=
100

1�125
= 88�89Ω

z21 =
V2

I1

����
I2=0

=
104

1�125
= 92�44Ω

z12 =
V1

I2

����
I1=0

=
30

0�3
= 100Ω

z22 =
V2

I2

����
I1=0

=
50

0�3
= 166�67Ω

We know from the previous example 7.12 that,

	� = z22 � z12z21
z11 + 	�

= 166�67� 92�44� 100

88�89 + 0

= 166�67� 103�99

= 62�68Ω

For maximum power transfer, 	� = 	�

= 62�68Ω (For resistive load)

V� =
z21
�

z11 + 	�

=
92�44� 100

88�89 + 0

= 104V
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The Thevenin equivalent circuit with respect
to the output terminals with load resistance is as
shown in Fig. 7.31.

�max = I2���

=

�
104

62�68� 2

�2
� 62�68

= 43�14W
Figure 7.31

EXAMPLE 7.15
Refer the network shown in Fig. 7.32(a). Find the impedance parameters of the network.

Figure 7.32(a)

SOLUTION

Figure 7.32(b)
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Referring to Fig. 7.32(b), we can write

V3 = 2 (I1 + I2)

KVL for mesh 1:

2I1 + 2I2 + 2 (I1 + I2) =V1

� 4I1 + 4I2 =V1

KVL for mesh 2:

2 (I2 � 2V3) + 2 (I1 + I2) =V2

� 2I2 � 4� 2 (I1 + I2) + 2 (I1 + I2) =V2

� 2I2 � 6 (I1 + I2) =V2

� � 6I1 � 4I2 =V2

z11 =
V1

I1

����
I2=0

=
4I1 + 4I2

I1

����
I2=0

= 4Ω

z21 =
V2

I1

����
I2=0

=
�6I1 � 4I2

I1

����
I2=0

= �6Ω

z12 =
V1

I2

����
I1=0

=
4I1 + 4I2

I2

����
I1=0

= 4Ω

z22 =
V2

I2

����
I1=0

=
�6I1 � 4I2

I2

����
I1=0

= �4Ω

EXAMPLE 7.16

Is it possible to find z parameters for any two port network ? Explain.

SOLUTION

It should be noted that for some two-port networks, the z parameters do not exist because they
cannot be described by the equations:

V1 = I1z11 + I2z12
V2 = I1z21 + I2z22

�
(7.29)

As an example, let us consider an ideal transformer as shown in Fig. 7.33.
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Figure 7.33

The defining equations for the two-port network shown in Fig. 7.33 are:

V1 =
1

�
V2 I1 = ��I2

It is not possible to express the voltages in terms of the currents, and viceversa. Thus, the ideal
transformer has no z parameters and no y parameters.

7.4 z and y parameters by matrix partitioning

For z parameters, the mesh equations are

V1 = z11I1 + z12I2 + 
 
 
 + z1�I�

V2 = z21I1 + z22I2 + 
 
 
 + z2�I�

0 = 
 
 
 
 
 

0 = z�1I1 + z�2I2 + 
 
 
 + z��I�

By matrix partitioning, the above equations can be written as

��� ���

��� ���

��� ���

��� ���

���

���

���

���
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The above equation can be simplified as (exact analysis not required)�
V1

V2

�
=
�
M �N Q�1 P

� � I1
I2

�

M�NQ�1P gives z parameters.
Similarly for y parameters,

�
�
I1
I2

�
=
�
M �N Q�1 P

� � V1

V2

�
M�NQ�1P gives y parameters.

EXAMPLE 7.17
Find y and z parameters for the resistive network shown in Fig. 7.34(a). Verify the result by using
Y�Δ transformation.

�

�� �� ���
�

Figure 7.34(a)

SOLUTION

For the loops indicated, the equations in matrix form,
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Then�

�
V1

V2

�
=

��
3 0
0 0�5

�
� 1

3�5

� �2
0�5

� � �2 0�5
� � I1

I2

��

�
�
1�8571 0�2857
0�2857 0�4285

�
= [z]

y = z�1 =

�
0�6 �0�4
�0�4 2�5

�

Verification

Figure 7.34(b)

Refer Fig 7.34(b), converting T of 1, 1’, 2 into equation,

	1 =
1� 1 + 1� 2 + 1� 2

1
= 5

	2 = 5

	3 =
5

2

	
�

2 =
5� 1

2
5�5

=
5

11

Figure 7.34(c)

Therefore,

y11 =
3

5
; y12 = y21 = �2

5
; y22 =

13

5
The values with transformed circuit is shown in Fig 7.34(c).

EXAMPLE 7.18
Find y and z parameters for the network shown in Fig.7.35 which contains a current controlled
source.

Figure 7.35
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SOLUTION

At node 1,
1�5V1 � 0�5V2 = I1

At node 2,
�0�5V1 +V2 = I2 � 3I1

In matrix form,�
1�5 �0�5
�0�5 1

� �
V1

V2

�
=

�
1 0
�3 1

� �
I1
I2

�

�
�
V1

V2

�
=

�
1�5 �0�5
�0�5 1

�
�1 �

1 0
�3 1

� �
I1
I2

�

=

� �0�4 0�4
�3�2 1�2

� �
I1
I2

�

Therefore� [z] =

� �0�4 0�4
�3�2 1�2

�

[y] = [z]�1 =

�
1�5 �0�5
4 �0�5

�

7.5 Hybrid parameters

The z and y parameters of a two-port network do not always exist. Hence, we define a third set
of parameters known as hybrid parameters. In the pair of equations that define these parameters,
V1 and I2 are the dependent variables. Hence, the two-port equations in terms of the hybrid
parameters are

V1 = h11I1 + h12V2 (7.30)

I2 = h21I1 + h22V2 (7.31)

or in matrix form, �
V1

I2

� �
h11 h12

h21 h22

� �
I1
V2

�

These parameters are particularly important in transistor circuit analysis. These parameters
are obtained via the following equations:

h11 =
V1

I1

����
V2=0

h12 =
V1

V2

����
I1=0

h21 =
I2
I1

����
V2=0

h22 =
I2
V2

����
I1=0

The parameters h11�h12�h21 and h22 represent the short-circuit input impedance, the open-
circuit reverse voltage gain, the short-circuit forward current gain, and the open-circuit output
admittance respectively. Because of this mix of parameters, they are called hybrid parameters.
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EXAMPLE 7.19
Refer the network shown in Fig. 7.36(a). For this network, determine the h parameters.

Figure 7.36(a)

SOLUTION

To find h11 and h21 short-circuit the output terminals so that V2 = 0. Also connect a current
source I1 to the input port as in Fig. 7.36(b).

Figure 7.36(b)

Applying KCL at node x:

�I1 + 
	

�


+

	 � 0

��

+ �I1 = 0

� I1 [�� 1] = �
	
�

1

�


+
1

��

�

� 
	 =
(1� �)I1�
��

�
 +��
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Hence� h11 =
V1

I1

����
V2=0

=

	 + I1��

I1

����
V2=0

=
(1� �)I1�
��

(�
 +��) I1
+��I1

=
(1� �)�
��

�
 +��

+��

KCL at node y:

�I1 + I2 + I3 = 0

� �I1 + I2 +
V	 � 0

��

= 0

� �I1 + I2 +
1

��

�
(1� �)I1�
��

�
 +��

�
= 0

Hence� h21 =
I2
I1

����
V2=0

= ��� (1� �)�


�
 +��

=
� (��� +�
)

�
 +��

To find h22 and h12 open-circuit the input port so that I1 = 0. Also, connect a voltage source
V2 between the output terminals as shown in Fig. 7.36(c).

Figure 7.36(c)

KCL at node y:
V1

�


+
V1 �V2

��

+ �I1 = 0
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Since I1 = 0, we get

V1

�


+
V1

��

� V2

��

= 0

V1

�
1

�


+
1

��

�
=

V2

��

� h12 =
V1

V2

����
I1=0

=
�


�
 +��

Applying KVL to the output mesh, we get

�V2 +�� (�I1 + I2) +�
I2 = 0

Since I1 = 0, we get

��I2 +�
I2 =V2

� h22 =
I2
V2

����
I1=0

=
1

�� +�


EXAMPLE 7.20
Find the hybrid parameters for the two-port network shown in Fig. 7.37(a).

Figure 7.37(a)

SOLUTION

To find h11 and h21, short-circuit the output port and connect a current source I1 to the input port
as shown in Fig. 7.37(b).

Figure 7.37(b)



536 � Network Theory

Referring to Fig. 7.37(b), we find that

V1 = I1 [2Ω + (8Ω��4Ω)]
= I1 � 4�67

Hence� h11 =
V1

I1

����
V2=0

= 4�67Ω

By using the principle of current division, we find that

�I2 = I1 � 8

8 + 4
=

2

3
I1

Hence� h21 =
I2
I1

����
V2=0

=
�2
3

To obtain h12 and h22, open-circuit the input port and connect a voltage source V2 to the
output port as in Fig. 7.37(c).

Figure 7.37(c)

Using the principle of voltage division,

V1 =
8

8 + 4
V2 =

2

3
V2

Hence� h12 =
V1

V2
=

2

3

Also� V2 = (8 + 4)I2

= 12I2

� h22 =
I2
V2

����
I1=0

=
1

12
S

EXAMPLE 7.21
Determine the h parameters of the circuit shown in Fig. 7.38(a).

Figure 7.38(a)
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SOLUTION

Performing Δ to Y transformation, the network shown in Fig. 7.38(a) takes the form as shown in

Fig. 7.38(b). Please note that since all the resistors are of same value, �� =
1

3
�Δ.

Figure 7.38(b)

To find h11 and h21, short-circuit the output port and connect a current source I1 to the input
port as in Fig. 7.38(c).

Figure 7.38(c)

Figure 7.38(d)

V1 = I1 [4Ω + (4Ω��4Ω)]
= 6I1

Hence� h11 =
V1

I1

����
V2=0

= 6Ω

Using the principle of current division,

�I2 = I1
4 + 4

� 4

� �I2 = I1
2

Hence� h21 =
I2
I1

����
V2=0

=
�1
2

To find h12 and h22, open-circuit the input port
and connect a voltage source V2 to the output port
as shown in Fig. 7.38(d).

Using the principle of voltage division, we get

V1 =
V2

4 + 4
� 4

� h12 =
V1

V2

����
I1=0

=
1

2

Also� V2 = [4 + 4]� I2 = 8I2

� h22 =
I2
V2

����
I1=0

=
1

8
S
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EXAMPLE 7.22

Determine the Thevenin equivalent circuit at the output of the circuit in Fig. 7.39(a).

Figure 7.39(a)

SOLUTION

To find 	�, deactivate the voltage source 
� and apply a 1 V voltage source at the output port, as
shown in Fig. 7.39(b).

Figure 7.39(b)

The two-port circuit is described using h parameters by the following equations:

V1 = h11I1 + h12V2 (7.32)

I2 = h21I1 + h22V2 (7.33)

But V2 = 1 V and V1 = �I1	�

Substituting these in equations (7.32) and (7.33), we get

�I1	� = h11I1 + h12

� I1 =
�h12

	� + h11
(7.34)

I2 = h21I1 + h22 (7.35)
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Substituting equation (7.34) into equation (7.35), we get

I2 = h22 � h21h12

h11 + 	�

=
h11h22 � h21h12 + h22	�

h11 + 	�

Therefore� 	� =
V2

I2
=

1

I2
=

h11 + 	�

h11h22 � h12h21 + h22	�

To get 
�, we find open circuit voltage V2 with I2 = 0. To find 
�, refer the Fig. 7.39(c).

Figure 7.39(c)

At the input port, we can write

�
� + I1	� +V1 = 0

� V1 = 
� � I1	� (7.36)

Substituting equation (7.36) into equation (7.32), we get


� � I1	� = h11I1 + h12V2

� 
� = (h11 + 	�) I1 + h12V2 (7.37)

and substituting I2 = 0 in equation (7.33), we get

0 = h21I1 + h22V2

� I1 =
�h22

h21
V2 (7.38)

Finally substituting equation (7.38) in (7.37), we get


� = (h11 + 	�)


�h22

h21
V2

�
+ h12V2

� V2 = 
� =

�h21

h12h21 � h11h22 � 	�h22

Hence, the Thevenin equivalent circuit as seen from the
output terminals is as shown in Fig. 7.39(d).

Figure 7.39(d)
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EXAMPLE 7.23
Find the input impedance of the network shown in Fig. 7.40.

Figure 7.40

SOLUTION

For the two-port network, we can write

V1 = h11I1 + h12V2 (7.39)

I2 = h21I1 + h22V2 (7.40)

But V2 = ��	� = �I2	� (7.41)

where 	� = 75 kΩ

Substituting the value of V2 in equation (7.40), we get

I2 = h21I1 � h22I2	�

� I2 =
h21I1

1 + 	�h22
(7.42)

Substituting equation (7.42) in equation (7.41), we get

V2 =
�	�h21I1
1 + 	�h22

(7.43)

Substituting equation (7.43) in equation (7.39), we get

V1 = h11I1 � h12	�h21I1
1 + 	�h22

Hence 	in =
V1

I1

= h11 � 	�h12h21

1 + 	�h22

= 3� 103 � 75� 103 � 10�5 � 200

1 + 75� 103 � 10�6

= 2�86kΩ



Two Port Networks � 541

EXAMPLE 7.24

Find the voltage gain,
V2


�
for the network shown in Fig. 7.41.

�

Figure 7.41

SOLUTION

For the two-port network we can write,

V1 = h11I1 + h12V2� here V1 = 
� � 	�I1

I2 = h21I1 + h22V2� here V2 = �	�I2

Hence� 
� � 	�I1 = h11I1 + h12V2

� 
� = (h11 + 	�) I1 + h12V2

� I1 =

� � h12V2

h11 + 	�

Also� I2 =
�V2

	�

= h21I1 + h22V2

� �V2

	�

= h21

�

� � h12V2

h11 + 	�

�
+ h22V2

From the above equation, we find that

V2


�
=

�h21	�

(h11	�) (1 + h22	�)� h12h21	�

=
�100� 50� 103

(2� 103 + 1� 103) (1 + 10�5 � 50� 103)� (10�4 � 100� 50� 103)

= �1250
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EXAMPLE 7.25
The following dc measurements were done on the resistive network shown in Fig. 7.42(a).

Measurement 1 Measurement 2
V1 = 20 V V1 = 35 V
I1 = 0�8 A I1 = 1 A
V2 = 0 V V2 = 15 V
I2 = �0�4 A I2 = 0 A

Find the value of � for maximum power transfer.

Figure 7.42(a)

SOLUTION

For the two-port network shown in Fig. 7.41, we can write:

V1 = h11I1 + h12V2

I2 = h21I1 + h22V2

From measurement 1:

h11 =
V1

I1

����
V2=0

=
20

0�8
= 25Ω

h21 =
I2
I1

����
V2=0

=
�0�4
0�8

= �0�5

From measurement 2:

V1 = h11I1 + h12V2

� 35 = 25� 1 + h12 � 15

� h12 =
10

15
= 0�67

Then� I2 = h21I1 + h22V2

� 0 = h21 � 1 + h22 � 15

h22 =
�h21

15
=

0�5

15
= 0�033 S
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For example (7.22),

Vt =
Vgh21

h12h21 − h11h22 − Zgh22

=
50× (−0.5)

0.67× (−0.5)− 25× 0.033− 20× 0.033

=
−25

−1.82
= 13.74 Volts

Zt =
h11 + Zg

h11h22 − h12h21 + h22Zg

=
25 + 20

25× 0.033− 0.67× (−0.5) + 0.033× 20

=
45

1.82
= 24.72 Ω

For maximum power transfer, ZL = Zt = 24.72 Ω (Please note that, ZL is purely resistive).
The Thevenin equivalent circuit as seen from the output terminals along with ZL is shown in

Fig. 7.42(b).

Figure 7.42(b)

Pmax = I2t × 24.72

=

[
13.74

24.72 + 24.72

]2
× 24.72

=
(13.74)2

4× 24.72
= 1.9Watts

EXAMPLE 7.26
Determine the hybird parameters for the network shown in Fig. 7.43.

�

Figure 7.43



544 � Network Theory

SOLUTION

To find h11 and h21, short-circuit the output terminals so that V2 = 0. Also connect a current
source I1 to the input port as shown in Fig. 7.44(a).

Figure 7.44(a)

Applying KVL to the mesh on the right side, we get

�2 [I1 + I2] +
1

���
[�I1 + I2] = 0

�
�
�2 +

�

���

�
I1 +

�
�2 +

1

���

�
I2 = 0

� [�+ ���2�] I1 = � [1 + ����2] I2

� I2 =
� [�+ ���2�]

1 + ���2�
I1

Hence� h21 =
I2
I1

����
V2=0

= �
�
�+ ����2

1 + ���2�

�

Applying KVL to the mesh on the left side, we get

V1 = �1I1 +�2 [I1 + I2]

= [�1 +�2] I1 +�2I2

=

�
�1 +�2 � �2 (�+ ����2)

1 + ���2�

�
I1

Hence� h11 =
V1

I1

����
V2=0
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= �1 +�2 � �2 (�+ ���2�)

1 + ���2�

=
�1 +�2 (1� �) + ���1�2�

1 + ���2�

To find h22 and h12, open-circuit the input terminals so that I1 = 0. Also connect a voltage
source V2 to the output port as shown in Fig. 7.44(b). The dependent current source is open,
because I1 = 0.

Figure 7.44(b)

V1 = I2R2

=
V2

�2 +
1

���

�2

Hence� h12 =
V1

V2

����
I1=0

=
����2

1 + ����2

I2 =
V2

�2 +
1

���

=
���V2

1 + ����2

� h22 =
I2
V2

����
I1=0

=
���

1 + ����2

7.6 Transmission parameters

The transmission parameters are defined by the equations:

V1 = AV2 �BI2

I1 = CV2 �DI2

�

Figure 7.45 Terminal variables used to define the ABCD Parameters
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Putting the above equations in matrix form we get�
V1

I1

�
=

�
A B
C D

� �
V2

�I2

�

Please note that in computing the transmission parameters,�I2 is used rather than I2, because
the current is considered to be leaving the network as shown in Fig. 7.45.

These parameters are very useful in the analysis of circuits in cascade like transmission lines
and cables. For this reason they are called Transmission Parameters. They are also known as
ABCD parameters. The parameters are determined via the following equations:

A =
V1

V2

����
I2=0

B =
V1

�I2

����
V2=0

C =
I1
V2

����
I2=0

D =
I1
�I2

����
V2=0

A, B, C and D represent the open-circuit voltage ratio, the negative short-circuit transfer
impedance, the open-circuit transfer admittance, and the negative short-circuit current ratio,
respectively. When the two-port network does not contain dependent sources, the following rela-
tion holds good.

AD � BC = 1

EXAMPLE 7.27
Determine the transmission parameters in the � domain for the network shown in Fig. 7.46.

Figure 7.46

SOLUTION

The � domain equivalent circuit with the assumption that all the initial conditions are zero is
shown in Fig. 7.47(a).

Figure 7.47(a)
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To find the parameters A and C, open-circuit the output port and connect a voltage source V1

at the input port. The same is shown in Fig. 7.47(b).

Figure 7.47(b)

Figure 7.47(c)

I1 =
V1

1 +
1

�

=
�V1

�+ 1

Then V2 =
1

�
I1

� V2 =
1

�

�V1

�+ 1
=

V1

�+ 1

� A =
V1

V2

����
I2=0

= �+ 1

Also� V2 =
1

�
I1

� C =
I1
V2

����
I2=0

= �

To find the parameters B and D, short-circuit
the output port and connect a voltage source V1 to
the input port as shown in Fig. 7.47(c).

The total impedance as seen by the source V1 is

Z = 1 +

1

�
� 1

1

�
+ 1

= 1 +
1

�+ 1
=
�+ 2

�+ 1

I1 =
V1

Z
=

V1 (�+ 1)

(�+ 2)
(7.44)

Using the principle of current division, we have

�I2 =
I1



1

�

�
1

�
+ 1

=
I1

�+ 1
(7.45)

Hence� D =
I1
�I2

����
V2=0

= �+ 1

From equation (7.44) and (7.45), we can write

�I2 (�+ 1) =
V1 (�+ 1)

(�+ 2)

Hence� B =
�V1

I2

����
V2=0

= �+ 2
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Verification
We know that for a two port network without any dependent sources,

AD�BC = 1

(�+ 1) (�+ 1)� � (�+ 2) = 1

EXAMPLE 7.28
Determine the ABCD parameters for the two port network shown in Fig. 7.48.

Figure 7.48

SOLUTION

To find the parameters A and C, open-circuit the output port as shown in Fig. 7.49(a) and connect
a voltage source V1 to the input port.

Figure 7.49(a)

Applying KVL to the output mesh, we get

�V2 +mI1 + 0��� + I1�� = 0

� V2 = I1 (m +��)

Hence� C =
I1
V2

����
I2=0

=
1

m+��

Applying KVL to the input mesh, we get

V1 = I1 (�� +�
)

Hence� A =
V1

V2

����
I2=0

=
�� +�


m+��

To find the parameters B and D, short-ciruit the output port and connect a voltage source V1

to the input port as shown in Fig. 7.49(b).
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Figure 7.49(b)

Applying KVL to the right-mesh, we get

mI1 +��I2 +�
 (I1 + I2) = 0

� (m +�
) I1 = � (�� +�
) I2

� I1 =
� (�� +�
)

(m +�
)
I2

Hence� D =
I1
�I2

����
V2=0

=
(�� +�
)

(m +�
)

Applying KVL to the left-mesh, we get

�V1 +��I1 +�
 (I1 + I2) = 0

� V1 = (�� +�
) I1 +�
I2

= (�� +�
)

�� (�� +�
)

(m +�
)
I2

�
+�
I2

= �
�
���� +���
 +�
�� �m�


m+�


�
I2

Hence� B =
V1

�I2

����
V2=0

=
���� +���
 +�
�� �m�


m+�


EXAMPLE 7.29
The following direct-current measurements were done on a two port network:

Port 1 open Port 1 Short-circuited
V1 = 1 mV I1 = �0�5 �A
V2 = 10 V I2 = 80 �A
I2 = 200 �A V2 = 5 V

Calculate the transmission parameters for the two port network.
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SOLUTION

For the two port network, we can write

V1 =AV2 �BI2

I1 =CV2 �DI2

From I1 = 0 (port 1 open): 1� 10�3 =A� 10�B� 200� 10�6

From V1 = 0 (Port 1 short): 0 =A� 5�B� 80� 10�6

Solving simultaneously yields,

A = �4� 10�4�B = �25Ω
From I1 = 0: 0 =C� 10�D� �200� 10�6

�
From V1 = 0: � 0�5� 10�6 =C� 5�D� 80� 10�6

Solving simultaneously yields,

C = �5� 10�7S� D = �0�025

In summary, A = �4� 10�4

B = �25Ω
C = �5� 10�7 S

D = �0�025
EXAMPLE 7.30

Find the transmission parameters for the network shown in Fig. 7.50.

Figure 7.50

SOLUTION

To find the parameters A and C, open the output port and connect a voltage source V1 to the input
port as shown in Fig. 7.51(a).



Two Port Networks � 551

Figure 7.51(a)

Applying KVL to the input loop, we get

V1 = 1�5� 103I1 + 10�3V2

Also KCL at node � gives

40I1 +
V2

40� 103
= 0

� I1 =
�V2

160� 103
= �6�25� 10�6V2

Substituting the value of I1 in the preceeding loop equation, we get

V1 = 1�5� 103
��6�25� 10�6V2

�
+ 10�3V2

� V1 = �9�375� 10�3V2 + 10�3V2

= �8�375� 10�3V2

Hence� A =
V1

V2

����
I2=0

= �8�375� 10�3

Also� C =
I1
V2

����
I2=0

= �6�25� 10�6

To find the parameters B and D, refer the circuit shown in Fig. 7.51(b).

Figure 7.51(b)
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Applying KCL at node b, we find

40I1 + 0 = I2

� I2 = 40I1

Hence� D =
�I1
I2

����
V2=0

=
�1
40

Applying KVL to the input loop, we get

V1 = 1�5� 103I1

� V1 = 1�5� 103 � I2
40

Hence� B =
V1

�I2

����
V2=0

=
�1�5
40

� 103

= �37�5Ω

EXAMPLE 7.31

Find the Thevenin equivalent circuit as seen from the output port using the transmission parame-
ters for the network shown in Fig. 7.52.

Figure 7.52

SOLUTION

For the two-port network, we can write

V1 = AV2 �BI2 (7.46)

I1 = CV2 �DI2 (7.47)
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Figure 7.53(a)

Refer the network shown in Fig. 7.53(a) to find 
�.
At the input port,


� � I1	� =V1 (7.48)

Also� I2 = 0 (7.49)

Making use of equations (7.48) and (7.49) in equations (7.46) and (7.47) we get,


� � I1	� =AV2 (7.50)

and I1 =CV2 (7.51)

Making use of equation (7.51) in (7.50), we get


� �CV2	� =AV2

� V2 = 
� =

�

A+C	�

To find ��, deactivate the voltage source 
� and then connect a voltage source V2 = 1 V at
the output port. The resulting circuit diagram is shown in Fig. 7.53(b).

Figure 7.53(b)
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Referring Fig. 7.53(b), we can write

V1 = �I1	�

Substituting the value of V1 in equation (7.46), we get

�I1	� =AV2 �BI2

� I1 =
�A
	�

V2 +
B

	�

I2 (7.52)

Equating equations (7.47) and (7.52) results

CV2 �DI2 =
�A
	�

V2 +
B

	�

I2

V2

�
C+

�A
	�

�
=

�
D+

B

	�

�
I2

Hence 	� =
V2

I2
=

D+
B

	�

C+
A

	�

=
B+D	�

A+C	�

Figure 7.54

Hence, the Thevenin equivalent circuit as seen from the output port is as shown in Fig. 7.54.

EXAMPLE 7.32
For the network shown in Fig. 7.55(a), find �� for maximum power transfer and the maximum
power transferred.

Figure 7.55(a)



Two Port Networks � 555

SOLUTION

From the previous example 7.31,

	� =
B+D	�

A+C	�

=
20 + 3� 20

4 + 0�4� 20
=

20 + 60

4 + 8
= 6.67Ω


� =

�

A+C	�

=
100

4 + 0�4� 20
=

100

12
= 8.33V

For maximum power transfer,
�� = 	� = 6�67Ω (purely resistive)

Hence, the Thevenin equivalent circuit as seen from
output terminals along with �� is as shown in
Fig. 7.55(b).

�� =
8�33

6�67 + 6�67
= 0�624A

(��)max = �2� � 6�67

= (0�624)2 � 6�67

= 2.6Watts

Figure 7.55(b)

EXAMPLE 7.33
Refer the bridge circuit shown in Fig. 7.56. Find the transmission parameters.

Figure 7.56

SOLUTION

Performing Δ to Y transformation, as shown in Fig. 7.57(a) the network reduces to the form as
shown in Fig. 7.57(b). Please note that, when all resistors are of equal value,

�Y =
1

3
�Δ
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Figure 7.57(a)

Figure 7.57(b)

To find the parameters A and D, open the output port and connect a voltage source V1 at the
input port as shown is Fig. 7.57(c).

Applying KVL to the input loop we get

I1 + 4I1 = V1

� V1 = 5I1

Also� I1 =
V2

4
� C =

I1
V2

����
I2=0

=
1

4
S

Also� � V1 = 5I1 =
5

4
V2

Hence� A =
V1

V2

����
I2=0

=
5

4
Figure 7.57(c)

To find the parameters B and D, refer the circuit shown in Fig. 7.57(d).
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Figure 7.57(d)

�I2 = I1 � 4

4 + 1
=

4

5
I1

Hence D = � I1
I2

����
v2=0

=
5

4

Applying KVL to the input loop, we get

�V1 + 1� I1 + 4� (I1 + I2) = 0

Substituting I1 = �5

4
I2 in the preceeding equation, we get

�V1 � 5

4
I2 + 4



�5

4
I2 + I2

�
= 0

� �V1 � 5

4
I2 � 5I2 + 4I2 = 0

� 4V1 = �9I2
Hence� B =

V1

�I2

����
v2=0

=
9

4
Ω

Verification:
For a two port network which does not contain any dependent sources, we have

AD�BC = 1

5

4
� 5

4
� 1

4
� 9

4
=

25

16
� 9

16
= 1

7.7 Relations between two-port parameters

If all the two-port parameters for a network exist, it is possible to relate one set of parameters to
another, since these parameters interrelate the variables V1� I1�V2 and I2� To begin with let us
first derive the relation between the z parameters and y parameters.

The matrix equation for the z parameters is�
V1

V2

�
=

�
z11 z12
z21 z22

� �
I1
I2

�
� V = zI (7.53)

Similarly, the equation for y parameters is�
I1
I2

�
=

�
y11 y12

y21 y22

� �
V1

V2

�
� I = yV (7.54)
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Substituting equation (7.54) into equation (7.53), we get

V = zyV

Hence� z = y�1 =
adj(y)

Δy
where Δy = y11y22 � y21y12

This means that we can obtain z matrix by inverting y matrix. It is quite possible that a
two-port network has a y matrix or a z matrix, but not both.

Next let us proceed to find z parameters in terms of ABCD parameters.
The ABCD parameters of a two-port network are defined by

V1 =AV2 �BI2

I1 =CV2 �DI2

� V2 =
1

C
(I1+DI2)

� V2 =
1

C
I1 +

D

C
I2 (7.55)

V1 =A



I1
C

+
DI2
C

�
�BI2

=
AI1
C

+



AD

C
�B

�
I2 (7.56)

Comparing equations (7.56) and (7.55) with

V1 = z11I1 + z12I2

V2 = z21I1 + z22I2

respectively, we find that

z11 =
A

C
z12 =

AD�BC

C
z21 =

1

C
z22 =

D

C

Next, let us derive the relation between hybrid parameters and z parameters.

V1 = z11I1 + z12I2 (7.57)

V2 = z21I1 + z22I2 (7.58)

From equation (7.58), we can write

I2 =
�z21
z22

I1 +
V2

z22
(7.59a)

Substituting this value of I2 in equation (7.57), we get

V1 = z11I1 + z12

��z21I1
z22

+
V2

z22

�

=

�
z11z22 � z12z21

z22

�
I1 +

z12V2

z22
(7.59b)
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Comparing equations (7.59b) and (7.59a) with

V1 = h11I1 + h12V2

I2 = h21I1 + h22V2

we get, h11 =
z11z22 � z12z21

z22
=

Δz

Z22

h12 =
z12
z22

h21 =
�z21
z22

h22 =
1

z22
where Δz = z11z22 � z12z21

Finally, let us derive the relationship between y parameters and ABCD parameters.

I1 = y11V1 + y12V2 (7.60)

I2 = y21V1 + y22V2 (7.61)

From equation (7.61), we can write

V1 =
I2
y21

� y22

y21
V2

=
�y22

y21
V2 +

1

y21
I2 (7.62)

Substituting equation (7.62) in equation (7.60), we get

I1 =
�y11y22

y21
V2 + y12V2 +

y11

y21
I2

=
�Δy

y21
V2 +

y11

y21
I2 (7.63)

Comparing equations (7.62) and (7.63) with the following equations,

V1 =AV2 �BI2

I1 =CV2 �DI2

we get A =
�y22

y21
B =

�1
y21

C =
�Δy

y21
D =

�y11

y21

where Δy = y11y22 � y12y21

Table 7.1 lists all the conversion formulae that relate one set of two-port parameters to another.
Please note that Δz, Δy, Δh, and ΔT, refer to the determinants of the matrices for z, y, hybrid,
and ABCD parameters respectively.
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Table 7.1 Parameter relationships

z y T h

z

�
� z11 z12

z21 z22

�
�

�
���

y22

Δy

�y12

Δy
�y21

Δy

y11

Δy

�
		�

�
���

A

C

ΔT

C
1

C

D

C

�
		�

�
���

Δh

h22

h12

h22

�h21

h22

1

h22

�
		�

y

�
��

z22
Δz

�z12
Δz

�z21
Δz

z11
Δz

�
	�

�
� y11 y12

y21 y22

�
�

�
���

D

B

�ΔT

B
�1
B

A

B

�
		�

�
���

1

h11

�h22

h11

h21

h11

Δh

h11

�
		�

T

�
���

z11
z21

Δz

z21
1

z21

z22
z21

�
		�

�
���
�y22

y21

�1
y21

�Δy

y21

�y11

y21

�
		�

�
� A B

C D

�
�

�
���
�Δh

h21

�h11

h21

�h22

h21

�1
h21

�
		�

h

�
���

Δz

z22

z12
z22

�z21
z22

1

z22

�
		�

�
���

1

y11

�y12

y11

y21

y11

Δy

y11

�
		�

�
���

B

D

ΔT

D

� 1

D

C

D

�
		�

�
� h11 h12

h21 h22

�
�

Δz = z11z22 � z12z21�Δy = y11y22 � y12y21�Δh = h11h22 � h12h21�ΔT = AD�BC

EXAMPLE 7.34
Determine the y parameters for a two-port network if the z parameters are

z =

�
10 5
5 9

�

SOLUTION
Δz = 10� 9� 5� 5 = 65

y11 =
z22
Δz

=
9

65
S

y12 =
�z12
Δz

=
�5
65

S

y21 =
�z21
Δz

=
�5
65

S

y22 =
z11
Δz

=
10

65
S
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EXAMPLE 7.35
Following are the hybrid parameters for a network:�

h11 h12

h21 h22

�
=

�
5 2
3 6

�

Determine the y parameters for the network.

SOLUTION
Δh = 5� 6� 3� 2 = 24

y11 =
1

h11
=

1

5
S

y12 =
�h22

h11
=
�6
5
S

y21 =
h21

h11
=

3

5
S

y22 =
Δh

h11
=

24

5
S

Reinforcement problems

R.P 7.1

The network of Fig. R.P. 7.1 contains both a dependent current source and a dependent voltage
source. Determine y and z parameters.

Figure R.P. 7.1

SOLUTION

From the figure, the node equations are

I�� = �


I2 � V2

2

�

At node �,

I1 = V1 � 2V2 �


I2 � V2

2

�
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At node �,

V1 = V2 � 2V1 �


I2 � V2

2

�
Simplifying, the nodal equations, we get

I1 + I2 =V1 � 3

2
V2

I2 = �3V1 +
3

2
V2

In matrix form,

�
1 1
0 1

� �
I1
I2

�
=

�
�� 1 �3

2

�3 3

2

�
	�� V1

V2

�

�
�
I1
I2

�
=

�
1 1
0 1

�
�1

�
�� 1 �3

2

�3 3

2

�
	�� V1

V2

�

Therefore� y =

�
� 4 �3
�3 3

2

�
�

and Z = �1

3

�
� 3

2
3

3 4

�
� =

�
� �0�5 1

1 �4

3

�
�

R.P 7.2

Compute y parameters for the network shown in Fig. R.P. 7.2.

Figure R.P. 7.2
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SOLUTION

The circuit shall be transformed into �-domain and then we shall use the matrix partitioning
method to solve the problem. From Fig 7.2, Node equations in matrix form,

� �

��

�

�

�

�

�

� �

��	

�

�

��
I1
I2

�
=
�
P �Q N�1 M

� � V1

V2

�

=

��
�+ 3 ��
�� �+ 2

�
� 1

5

�
2
1

� �
2 1

�� � V1

V2

�

=

���
��
�
�+ 3 ��
�� �+ 2

�
�

�
��

4

5

2

5
2

5

1

5

�
	�
���
��
�
V1

V2

�

y =

�
�+ 2�2 �(�+ 0�4)

�(�+ 0�4) �+ 1�8

�

R.P 7.3

Determine for the circuit shown in Fig. R.P. 7.3(a): (a) �1, �2, �3 and �� in terms of y parameters.
(b) Repeat the problem if the current source is connected across �3 with the arrow pointing to the
left.

Figure R.P. 7.3(a)
SOLUTION

(a) Refering Fig. R.P. 7.3(a), the node equations are:
At node 1

I1 = �1V1 + (V1 �V2)�3

=V1(�1 + �3)� �3�2 (7.64)

At node 2
I2 = ��V1 +V2�2 + (V2 �V1)�3

= (�� � �3)V1 + (�2 + �3)V2 (7.65)
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Then from equations (7.64) and (7.65),

y11 = �1 + �3; y12 = �� 3

y21 = �� � �3; y22 = �2 + �3

Solving,

�3 = �y12; �1 = y11 + y12

�2 = y22 + y12; �� = y21 � y12

(b) Making the changes as given in the problem, we get the circuit shown in Fig R.P. 7.3(b).

Figure R.P. 7.3(b)

Node equations : At node 1

I1 = �1V1 + (V1 �V2)�3 � ��V1

= (�1 + �3 � ��)V1 � �3V2 (7.66)

At node 2,

I2 =V2�2 + (V2 �V1)�3 + ��V1

= (�� � �3)V1 +V2(�2 + �3) (7.67)

From equations (7.66) and (7.67),

y11 = �1 + �3 � ��; y12 = ��3
y21 = �� � �3; y22 = �2 + �3

Solving,

�3 = �y12; �2 = y22 � y12

�� = y21 � y12

�1 = y11 � �3 + ��

= y11 + y12 + y21 � y12 = y11 � y21
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R.P 7.4

Complete the table given as part of Fig. R.P. 7.4. Also find the values for y parameters.

Figure R.P. 7.4

Table

Sl.no V1 V2 I1 I2
1 50 100 �1 27
2 100 50 7 24
3 200 0 � �
4 � � 20 0
5 � � 10 30

SOLUTION

From article 7.2, �
I1
I2

�
=

�
y11 y12

y21 y22

� �
V1

V2

�

Substituting the values from rows 1 and 2,� �1 7
27 24

�
=

�
y11 y12

y21 y22

� �
50 100
100 50

�

Post multiplying by [V]�1,

�
y11 y12

y21 y22

�
=

� �1 7
27 24

� �
50 100
100 50

�
�1

=

�
0�1 �0�06
0�14 0�2

�

For row 3: �
I1
I2

�
=

�
0�1 �0�06
0�14 0�2

� �
200
0

�
=

�
20
28

�

For row 4: �
V1

V2

�
=

�
0�1 �0�06
0�14 0�2

�
�1 �

20
0

�
=

�
140�84
�98�59

�

For row 5: �
V1

V2

�
=

�
0�1 �0�06
0�14 0�2

�
�1 �

10
30

�
=

�
133�8
56�338

�
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R.P 7.5

Find the condition on � and � for reciprocity for the network shown in Fig. R.P. 7.5.

Figure R.P. 7.5

SOLUTION

The loop equations are

V1 � �V2 = 3(I1 + I3) (7.68)

V2 = (I2 � I3)� �I1 (7.69)

I3 =V2 � (V1 � �V2)

= (1 + �)V2 �V1 (7.70)

Substituting equation (7.70) in equations (7.68) and (7.69),

V1 � �V2 = 3I1 + 3(1 + �)V2 � 3V1

� 4V1 = (3 + 4�)V2 + 3I1 (7.71)

V2 = I2 � [(1 + �)V2 �V1]� �I1

� �V1 + (2 + �)V2 = ��I1 + I2 (7.72)

Putting equations (7.71) and (7.72) in matrix form and solving�
V1

V2

�
=

�
4 �(3 + 4�)
�1 2 + �

�
�1 �

3 0
�� 1

� �
I1
I2

�

=
1

Δ

�
2 + � 3 + 4�
1 4

� �
3 0
�� 1

� �
I1
I2

�

=
1

Δ

�
� 3 + 4�

3� 4� �

� �
I1
I2

�

For reciprocity,

3 + 4� = 3� 4�

Therefore� � = ��
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R.P 7.6

For what value of � is the circuit reciprocal? Also find h parameters.

Figure R.P. 7.6

SOLUTION

The node equations are

V1 � 0�5V1 � I1 = V2

V2 = (I1 + I2)2 + �I1

h =

�
0�5 0
0 �2

�
�1 �

1 1
2 + � �1

�

=
1

Δ

� �2 0
0 0�5

� �
1 1

2 + � �1
�

=

�
��

2 2

2 + �

2
0�5

�
	� (Δ = �1)

For reciprocity,

h12 = �h21

� 2 =
2 + �

2
� � 4 = 2 + �; � = 2

Therefore h =

�
2 2
2 0�5

�
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R.P 7.7

Find y12 and y21 for the network shown in Fig. R.P. 7.7 for � = 10. What is the value of � for the
network to be reciprocal?

Figure R.P. 7.7

SOLUTION

Equations for I1 and I2 are

I1 =
V1 � 0�01V2

5
= 0�2V1 � 0�002V2 (7.73)

I2 =
V2

20
+ �I1 +

V2 � 0�01V2

50
(7.74)

Substituting the value of I1 from equation (7.73) in equation (7.74), we get

I2 = �(0�2V1 � 0�002V2) +
V2

20
+

V2 � 0�01V2

20
(7.75)

Simplifying the above equation with � = 10,

I2 = 2V1 + 0�0498V2 (7.76)

From equation (7.73), y12 = �0�002
and from equation (7.75), y21 = 0�2�

For reciprocity y12 = y21

� �0�002 = 0�2�

Hence� � = �0�01

R.P 7.8

Find T parameters (ABCD) for the two-port network shown in Fig. R.P. 7.8.

Figure R.P. 7.8
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SOLUTION

Network equations are

V1 � 10I1 = V2 � 1�5V1 (7.77)

I1 � V2 � 1�5V1

25
+ I2 � V2

20
= 0 (7.78)

Simplifying,

2�5V1 � 10I1 =V2

0�06V1 + I1 = 0�09V2 � I2

In matrix form, �
2�5 �10
0�06 1

� �
V1

I1

�
=

�
1 0

0�09 1

� �
V2

�I2

�

Therefore

T =

�
2�5 �10
0�06 1

�
�1 �

1 0
0�09 1

�
=

�
0�613 3�23
0�053 0�806

�

R.P 7.9

(a) Find T parameters for the active two port network shown in Fig. R.P. 7.9.
(b) Find new T parameters if a 20 Ω resistor is connected across the output.

Figure R.P. 7.9

SOLUTION

(a) With 
	 = 10I1,
0�08
	 = 0�8I1

Therefore� V1 � 10I1 =V2 � 5(I2 � 0�08
	)

=V2 � 5I2 + 4I1 (7.79)

I1 + I2 � 0�8I1 =
V1 � 10I1

50
(7.80)
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Simplying the equations (7.79) and (7.80),we get

V1 � 14I1 =V2 � 5I2

and �V1 + 20I1 = �50I2

Therefore,

T =

�
1 �14
�1 20

�
�1 �

1 5
0 50

�
=

�
3�33 133�33
0�167 9�17

�

(b) Treating 20 Ω across the output as a second T network for
which

T =

�
1 0
1

20
1

�

Then new T-parameters,

T =

�
3�33 133�33
0�167 9�17

� � 1 0
1

20
1

�
=

�
10 133�33

0�625 9�17

�

R.P 7.10

Obtain z parameters for the network shown in Fig. R.P. 7.10.

Figure R.P. 7.10

SOLUTION

At node 1,

V1 = (I1 � 0�3V2)10 +V2

= 10I1 � 2V2 (7.81)

At node 2,

V2 =



I2 � V2

6

�
10 +V1 = 10I2 +V1 � 5

3
V2

� 8

3
V2 =V1 + 10I2 (7.82)
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Putting in matrix form,

[
1 2

1
−8

3

] [
V1

V2

]
=

[
10 0
0 −10

] [
I1
I2

]

Therefore,

z =

[
1 2

1
−8

3

]−1 [
10 0
0 −10

]
=

[
5.71 −4.286
2.143 2.143

]

R.P 7.11

Obtain z and y parameters for the network shown in Fig. R.P. 7.11.

Figure R.P. 7.11

SOLUTION

For the meshes indicated, the equations in matrix form is
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By matrix partitioning,

z =

�
��

�+ 2

�

2

�

2

�

�+ 4

2�

�
	�� � 2�

3�+ 4

��� �1
1

2

�
�� �1 1

2

�

=

�
��

�+ 2

�

2

�

2

�

�+ 4

2�

�
	�� � 2�

3�+ 4

���� 1
�1
2

�1

2

1

4

�
	�

=

�
���

�+ 2

�

2

�

2

�

�+ 4

2�

�
		��

�
���

2�

3�+ 4

��
3�+ 4

��
3�+ 4

�8�
3�+ 4

�
		�

=

�
�����

�2 + 10�+ 8

�(3�+ 4)

�2 + 6�+ 8

�(3�+ 4)

�2 + 6�+ 8

�(3�+ 4)

�2 + 8�+ 8

�(3�+ 4)

�
				�

R.P 7.12

Find z and y parameters at � = 108 rad/sec for the transistor high frequency equivalent circuit
shown in Fig. R.P. 7.12.

Figure R.P. 7.12

SOLUTION

In the circuit, 
	 = V1. Therefore the node equations are

I1 = (10�5 + �6� 10�4)V1 � �10�4V2

I2 = ��10�4V1 + 0�01V1 + 10�4(1 + �)V2
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Simplifying the above equations,

I1 = 10−4[(0.1 + j6)V1 − j1V2]

I2 = 10−4[(100 + j1)V1 + (1 + j)V2]

Therefore,

[
I1
I2

]
=

⎡
⎣ 0.1 + j6 −j1

100− j1 1 + j1

⎤
⎦× 10−4

⎡
⎣ V1

V2

⎤
⎦

ωC1 = 108 × 5× 10−12 = 5× 10−4

ωC2 = 108 × 10−12 = 10−4

Δ = 10−8[(0.1 + j6)(1 + j) + (100− j1)(j1)]

= 10−8 × 106.213 /92.64◦

Therefore, y =

⎡
⎣ 6 /89◦ −j1

100 /−0.6◦
√
2 /45◦

⎤
⎦× 10−4

Then, z = y−1 =

⎡
⎣

√
2 /45◦ j1

100 /−180.6◦ 6 /89◦

⎤
⎦× 10−4 ÷Δ

=

⎡
⎣

√
2 /45◦ j1

100 /−180.6◦ 6 /89◦

⎤
⎦× 10−4

10−8 × 106.213 /92.64◦

=

⎡
⎣ 133.15 /−47.64◦ 94.16 /−2.64◦

94.16 /86.8◦ 565 /−31.6◦

⎤
⎦

R.P 7.13

Obtain TA, TB , TC for the network shown in Fig. R.P. 7.13 and obtain overall T.

� � �

Figure R.P. 7.13
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SOLUTION

Using the equation for T-parameters for a � -network

A =
	1 + 	3

	3
; B =

�
	1	3

	3
; C =

1

	3
; D =

	2 + 	3

	3

We have for � T� =

�
��

7

5
2

1

5
1

�
	�

For �� T
 =

�
��

9

6

54

6
1

6

10

6

�
	�

For �� T� =

�
1 0
1

7
1

�

Overall T : T = [T�][T
][T� ] =

�
4�709 15�93
0�962 3�46

�
This dervation is left as an exercise to the reader.

Verification:
Using T�Δ transformation, that is changing T (3, 4, 6 ) of Fig. R.P. 7.13, in to Δ,

		� = 13�5

		� = 9

	�� = 18

Figure R.P.7.13(a)

Putting the values in the circuit of Fig. R.P. 7.13, we get

Figure R.P.7.13(b)
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Reducing, the above circuit, we get the circuit shown in Fig. R.P. 7.13c.

Figure R.P. 7.13(c)

Converting the circuit into T, we get the circuit shown in Fig. R.P. 7.13(d).
Now from Fig. R.P. 7.13(d),

Figure R.P. 7.13(d)

A =
3�8564 + 1�0396

1�0396
= 4�709

B =
1�0396(3�8564 + 2�5644) + 3�8564� 2�5644

1�0396
= 15�93 Ω

C =
1

	�

=
1

1�0396
= 0�962

D =
2�5644 + 1�0396

1�0396
= 3�46

Exercise Problems

E.P 7.1

Find the y parameters for the network shown in Fig. E.P. 7.1.

Figure E.P. 7.1

Ans: y11 =
α+R� +R


R�R


�y12 =
�1

R


�y21 =
�(α+R�)

R�R


�y22 =
1

R


�
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E.P 7.2

Find the z parameters for the network shown in Fig. E.P. 7.2.

Figure E.P. 7.2

Ans: z11 =
13

7
Ω� z12 =

2

7
Ω� z21 =

2

7
Ω� z22 =

3

7
Ω�

E.P 7.3

Find the h parameters for the network shown in Fig. E.P. 7.3.

Figure E.P. 7.3

Ans: h11 =
sC�R�R� +R� + (1�m)R�

sC�R� + 1
� h21 =

sC�R� +m

sC�R� + 1
.

h12 =
sC�R�

sC�R� + 1
� h22 =

sC�
sC�R� + 1

.

E.P 7.4

Find the y parameters for the network shown in Fig. E.P. 7.4.

Figure E.P. 7.4

Ans: y11 = y22 =
7

15
S� y12 = y21 =

�2

15
S.
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E.P 7.5

Find the y parameters for the network shown in Fig. E.P. 7.5. Give the result in � domain.

Figure E.P. 7.5

Ans: y11 = y22 =
2s(2s+ 1)

4s+ 1
� y12 = y21 =

�4s2

4s+ 1
.

E.P 7.6

Obtain the y parameters for the network shown in Fig. E.P. 7.6.

Figure E.P. 7.6

Ans: y11 = 0�625 S� y12 = �0�125 S� y21 = 0�375 S� y22 = 0�125 S�

E.P 7.7

Find the z parameters for the two-port network shown in Fig. E.P. 7.7. Keep the result in � domain.

Figure E.P. 7.7

Ans: z11 =
2s+ 1

s
� z12 = z21 = 2� z22 =

2s+ 2

s
.
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E.P 7.8

Find the h parameters for the network shown in Fig. E.P. 7.8. Keep the result in � domain.

Figure E.P. 7.8

Ans: h11 =
5s+ 4

2(s+ 2)
� h12 =

s+ 4

2(s+ 2)
� h21 =

�(s+ 4)

2(s+ 2)
� h22 =

s

2(s+ 2)
�

E.P 7.9

Find the transmission parameters for the network shown in Fig. E.P. 7.9. Keep the result in �

domain.

Figure E.P. 7.9

Ans: A =
3s+ 4

s+ 4
� B =

2s+ 4

s+ 4
� C =

4s

s+ 4
� D =

3s+ 4

s+ 4
�

E.P 7.10

For the same network described in Fig. E.P. 7.9, find the h parameters using the defining equations.
Then verify the result obtained using conversion formulas.

Ans: h11 =
2s+ 4

3s+ 4
� h12 =

s+ 4

3s+ 4
� h21 =

�(s+ 4)

3s+ 4
� h22 =

4s

3s+ 4
�
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E.P 7.11

Select the values of ��, �
 , and �� in the circuit shown in Fig. E.P. 7.11 so that A =1, B = 34 Ω,
C = 20 mS and D = 1.4.

�� ��

����

Figure E.P. 7.11

Ans: R� = 10Ω� R� = 20Ω� R� = 50Ω�

E.P 7.12

Find the � domain expression for the h parameters of the circuit in E.P. 7.12.

Figure E.P. 7.12

Ans: h11 =

1

C
s

s2 +
1

LC

� h12 = h21 =
�

1

LC

s2 +
1

LC

� h22 =

Cs



s2 +

2

LC

�

s2 +
1

LC

�

E.P 7.13

Find the y parameters for the network shown in Fig. E.P. 7.13.

Figure E.P. 7.13

Ans: y11 = 0�04S� y12 = �0�04S� y21 = 0�04S� y22 = �0�03S�
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E.P 7.14

Find the two-port parameters h12 and y12 for the network shown in Fig. E.P. 7.14.

Figure E.P. 7.14

Ans: h12 = 1�2� y12 = 0�24S�

E.P 7.15

Find the ABCD parameters for the 4Ω resistor of Fig. E.P. 7.15. Also show that the ABCD
parameters for a single 16Ω resistor can be obtained by (ABCD)4�

Figure E.P. 7.15

Ans: Verify your answer using the relation between the parameters.

E.P 7.16

For the � -network shown in Fig. E.P. 7.16. show that AD � BC =1.

Figure E.P. 7.16
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E.P 7.17

Find y21 for the network shown in Fig. E.P. 7.17.

Figure E.P. 7.17

Ans: y21 =
�s

4s+ 1
�

E.P 7.18

Determine the y-parameters for the network shown in Fig. E.P. 7.18.

Figure E.P. 7.18

Ans: y11 =
s3 + s2 + 2s+ 1

s(s2 + 2)
� y12 = y21 =

�1

s(s2 + 2)
� y22 =

s3 + s2 + 2s+ 1

s(s2 + 2)
�

E.P 7.19

Obtain the h-parameters for the network shown in Fig. 7.19.

Figure E.P. 7.19

Ans: h11 =
30

11
Ω� h21 =

�1

11
� h12 =

1

11
� h22 =

4

11
�

E.P 7.20

The following equations are written for a two-port network. Find the transmission parameters for
the network. (Hint: use relation between y and T parameters).

I1 = 0�05V1 � 0�4V2 I2 = �0�4V1 + 0�1V2
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E.P 7.21

Find the network shown in figure, determine the z and y parameters.

Figure E.P. 7.21

Ans: y11 = 4�
�� y22 = 3�� y12 = y21 = �3�,

z11 = 1Ω� z22 =
4

3
Ω� z12 = z21 = 1Ω�

E.P 7.22

Determine the z, y and Transmission parameters of the network shown in Fig. 7.22.

Figure E.P. 7.22

Ans: y11 =
3

55
�, y12 = y21 =

1

55
�, y22 =

4

55
�,

z11 = 20Ω, z12 = z21 = 5Ω z22 = 15Ω

A = 55Ω B = 55Ω C = 0.2�, D = 3.

E.P 7.23

For the network shown in Fig. E.P. 7.23 determine z parameters.

Figure E.P. 7.23

Ans: z11 =
2s(5s+ 1)

2s2 + 5s+ 1
, z12 = z21 =

2s

2s2 + 5s+ 1
, z22 =

2s3 + 5s2 + 3s+ 5

2s2 + 5s+ 1

� The unit � and S are same
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E.P 7.24

Determine the y parameters of the two-port network shown in Fig. E.P. 7.24.

Figure E.P. 7.24

Ans: y11 =
1

4
�, y21 =

�1

4
�, y12 =

�5

4
�, y22 =

�4

3
�.


